未来のための哲学講座 命題集 Propositions of great philosophers
活用するための哲学サイト。著作名から調べる。人名から調べる。順次、充実させていきます。(大幅に遅延中)
ページ
(移動先: ...)
ホーム
命題集(記事一覧)
▼
ラベル
小林哲生
の投稿を表示しています。
すべての投稿を表示
ラベル
小林哲生
の投稿を表示しています。
すべての投稿を表示
2021年11月15日月曜日
人間の作った数学が、何故この宇宙を有効に記述可能なのかという、数学の有効性の奇蹟という問題がある。宇宙の構成原理そのものが数字的なものだとは思えないが、数学を支える脳の組織化原理が、宇宙の構造に合致するよう選択されてきたのではないだろうか。(スタニスラス・ドゥアンヌ(1965-))
›
数学の有効性の奇跡 人間の作った数学が、何故この宇宙を有効に記述可能なのかという、数学の有効性の奇蹟という問題がある。宇宙の構成原理そのものが数字的なものだとは思えないが、数学を支える脳の組織化原理が、宇宙の構造に合致するよう選択されてきたのではないだろうか。 ( スタニスラス・...
直感の生得的カテゴリーを基礎に、 数学者はどうやってさらに抽象的な記号の構築を洗練させていけるかが問題である。自由な構築と選択の試行錯誤が、その答えである。論理展開のやり方さえも、多くの世代を経て進化してきた。(スタニスラス・ドゥアンヌ(1965-))
›
自由な構築と選択 直感の生得的カテゴリーを基礎に、 数学者はどうやってさらに抽象的な記号の構築を洗練させていけるかが問題である。自由な構築と選択の試行錯誤が、その答えである。論理展開のやり方さえも、多くの世代を経て進化してきた。 ( スタニスラス・ドゥアンヌ (1965-))...
たとえ数学が形式的な記号操作を基礎としていても、またあたかも抽象的な世界の実在物に思えたとしても、それは、私たちが世界を捉える生得的な直感を基盤に持つ。乳児は物体を個別化し、小さな集合から数を抽象する。幼児は、数の推定、比較、数えること、単純な加減算を、明確な指示なく行う。(スタニスラス・ドゥアンヌ(1965-))
›
数学の本質 たとえ数学が形式的な記号操作を基礎としていても、またあたかも抽象的な世界の実在物に思えたとしても、それは、私たちが世界を捉える生得的な直感を基盤に持つ。乳児は物体を個別化し、小さな集合から数を抽象する。幼児は、数の推定、比較、数えること、単純な加減算を、明確な指示なく...
›
ホーム
ウェブ バージョンを表示