ラベル 数学の進化 の投稿を表示しています。 すべての投稿を表示
ラベル 数学の進化 の投稿を表示しています。 すべての投稿を表示

2021年11月15日月曜日

直感の生得的カテゴリーを基礎に、 数学者はどうやってさらに抽象的な記号の構築を洗練させていけるかが問題である。自由な構築と選択の試行錯誤が、その答えである。論理展開のやり方さえも、多くの世代を経て進化してきた。(スタニスラス・ドゥアンヌ(1965-))

自由な構築と選択

直感の生得的カテゴリーを基礎に、 数学者はどうやってさらに抽象的な記号の構築を洗練させていけるかが問題である。自由な構築と選択の試行錯誤が、その答えである。論理展開のやり方さえも、多くの世代を経て進化してきた。(スタニスラス・ドゥアンヌ(1965-))

 「この枠組みでは、説明すべきものとして残ったのは、直感の生得的カテゴリーを基礎に、 数学者はどうやってさらに抽象的な記号の構築を洗練させていけるか、ということである。フ ランスの神経心理学者のジャン=ピエール・シャンジュの考えと同様、私は、構築があって選 択が起こるという進化のプロセスが数学に起こっていると示唆したい。数学が進化しているの は、よく立証された歴史の事実だ。数学は、堅固な知識のかたまりなどではない。その対象 も、論理展開のやり方さえも、多くの世代を経て進化してきた。数学の城は、試行錯誤で建て られてきた。もっとも高い骨組は、ときには崩れる寸前となり、それを崩しては再構築すると いう終わりのない繰り返しの中にある。どんな数学的構築の基礎も、集合、数、空間、時間、 論理の概念といった、本質的直感に基づいている。これらはほとんど疑問視されることはな く、私たちの脳が作り出す、何ものにも還元できない表象に深く根ざしている。数学は、これ らの直感の形式論理化をだんだんに進めてきたと言ってよいだろう。その目的は、そうした直 感をより矛盾なく、互いに整合性があり、外界に関する私たちの経験により適応したものにす ることである。  数学の対象に何を選び、どれを次世代に伝えていくかは、複数の基準がかかわっているよう だ。純粋数学では、矛盾のないことが一番だが、エレガンスと簡潔さも、その数学的構築を保 存するのに重要な性質である。応用数学では、もう一つ重要な基準がつけ加わる。その数学的 構築が物理的世界で妥当であることだ。毎年毎年、自己矛盾があったり、エレガントでなかっ たり、無用であったりする数学的構築が、無慈悲に見つけ出され、除去されていく。もっとも 強いものだけが、時の証明に耐えるのである。」

 (スタニスラス・ドゥアンヌ(1965-),『数覚とは何か?』,第3部 神経細胞と数について,第9 章 数とは何か?,数学の構築と選択,早川書房(2010),pp.427-428,長谷川眞理子,小林哲 生,(訳))






人気の記事(週間)

人気の記事(月間)

人気の記事(年間)

人気の記事(全期間)

ランキング

ランキング


哲学・思想ランキング



FC2