ラベル R・ダグラス・フィールズ『もうひとつの脳』 の投稿を表示しています。 すべての投稿を表示
ラベル R・ダグラス・フィールズ『もうひとつの脳』 の投稿を表示しています。 すべての投稿を表示

2020年6月28日日曜日

ミエリンがインパルスをひとつのランヴィエ絞輪からその次へと、順に飛び移らせる。また、神経インパルスの発火は、軸索膜を介して移動するイオンと水分子によって、わずかな光学的変化と微小な温度変化を生じさせる。(田崎一二(1910-2009))

田崎一二

【ミエリンがインパルスをひとつのランヴィエ絞輪からその次へと、順に飛び移らせる。また、神経インパルスの発火は、軸索膜を介して移動するイオンと水分子によって、わずかな光学的変化と微小な温度変化を生じさせる。(田崎一二(1910-2009))】

(出典:wikipedia
田崎一二(1910-2009)の命題集(Propositions of great philosophers)
 「田崎一二という彼の名前は、あまり知られていないが、彼の精力的な仕事のもたらした成果を知らない者は誰もいない。私たちの神経系が筋肉を制御するために、神経を通して電気を送ることによって機能していること、そして、感覚器官から脳へインパルスが送られていることは、誰もが知っている。がだ、インパルスはどのようにして軸索を伝導されているのだろうか? この疑問に答えたのが、田崎博士だ。」(中略)「電気的インパルスは、誰もが想定していたように、電波として神経線維を駆け抜けているのではなかった。バレエダンサーが舞台の端から端までを二、三度の跳躍で横切るように、ミエリンがインパルスをひとつのランヴィエ絞輪からその次へと、順に飛び移らせていることを、彼は発見した。この発見は、どうしたら有髄軸索が無髄軸索の100倍も速く情報を伝えられるのかを説明していた。」(中略)「1960年代に神経線維の電気的興奮の研究に取り組んでいたとき、田崎は注意深い観察に基づいて、細胞膜を通って移動するイオンが消費したエネルギーに従って、神経インパルスが軸索にわずかな光学的変化と微小な温度変化を引き起こすことを明らかにした。さらに驚いたことに、彼は精巧な装置を作り上げて、神経インパルスの発火中に、軸索膜を介して移動するイオンと水分子が引き起こす、軸索の微細な膨張と収縮を検出した。」(中略)「どんな細胞も、刻々と変化する環境の中で厳密に容積を調節するという難問に直面していることは、私も承知していた。体液中の塩分量が減ると、細胞内外の平衡を回復するために、水やイオンが細胞膜を通して再分配されて、細胞は膨張する。細胞が膨張し始めても破裂しないのは、細胞膜にチャネルを持っていて、細胞を出入りする水や小分子の流れを調節し、正常な細胞容積を回復できるからだ。電気的インパルスが軸索を膨張させたとしても、これらのチャネルが開いて小分子や水を放出し、軸索を収縮させて正常な大きさに戻しているのかもしれない。このようなチャネルを通してATPが外へ出ていけるのならば、神経伝達物質が放出されるシナプスから遠く離れていたとしても、グリアはこのATP放出によって、軸索内の神経インパルスの活動を感知することができるだろう。この仮説を検証するために、私は9年にわたってさまざまな実験を積み重ねた。そしてついに、この仮説を証明し、シナプスを介することなく、軸索から他の脳細胞へ情報が送られる新しい様式を解明して、この研究を完了した。研究成果を公表するために論文を書き上げ、その謝辞のなかで、田崎博士に謝意を表した。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第15章 シナプスを超えた思考,講談社(2018),pp.504-509,小松佳代子(訳),小西史朗(監訳))
(索引:田崎一二)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

2つの信号を同時に合流させるか否かを制御するために、ミエリン形成グリアは軸索ケーブルの伝導速度を調整する。これは遺伝特性だけでは実現できず、多様で多くの経験を必要とする。(R・ダグラス・フィールズ(19xx-))

ミエリン形成グリアの役割

【2つの信号を同時に合流させるか否かを制御するために、ミエリン形成グリアは軸索ケーブルの伝導速度を調整する。これは遺伝特性だけでは実現できず、多様で多くの経験を必要とする。(R・ダグラス・フィールズ(19xx-))】

(1)2つの信号が1つのニューロンに同時に到達させるかどうかの制御
 (a)軸索の伝導速度を制御することによって、ミエリン形成グリアは、二本の軸索を伝わるインパルスが、一個のニューロンのもとへ同時に合流するかどうかを決定できる。
 (b)「同時に発火するニューロンは、一緒に配線される」という法則が求めるとおりに、確実に入力を同時到着させるためには、インパルスの伝導速度を、長い軸索では増大させ、短い軸索では低下させる必要がある。
(2)軸索を通過するインパルスの到着時間に影響する要因
 (a)胎児脳の発達期に伸び出した成長円錐のたどった個別の経路
 (b)軸索の直径
 (c)軸索の全長
 (d)ランヴィエ絞輪を作るミエリン形成グリアの数
 (e)ミエリン鞘の厚さ
 (f)神経インパルスを発生させるイオンチャネルの種類と数
(3)機能的な経験を通じた制御
 遺伝的特性だけで、最適な伝導速度の配線が行えるとは思えない。軸索ケーブルの伝導速度をそれぞれの脳回路の必要条件に適合させるためには、機能的な経験によって、何らかの調節がなされている可能性のほうが高いだろう。

 「軸索の伝導速度を制御することによって、ミエリン形成グリアは、二本の軸索を伝わるインパルスが、一個のニューロンのもとへ同時に合流するかどうかを決定できる。入力する二本の軸索からのインパルスが同時に到着すれば、それらが樹状突起に発生させるシナプス電位は加算され、より大きな応答を引き起こす。しかし、到着のタイミングがわずかにずれれば、それぞれの入力によって発生するシナプス電位は加算されない。これはちょうど、二人で協力して、轍にはまった自動車を押し出そうとするようなものだ。二人は正確にタイミングを合わせて押さなければならない。インパルスが樹状突起に同時に到着しなかった場合、同時に到着していたら生じただろう大きさのわずか半分の二つの小さな電位変化が、連続して発生することになる。それぞれの電位パルスの大きさが不十分で、シナプス後ニューロンにどんな応答も誘発できない可能性もある。
 重要な神経回路への入力も、長さの異なる軸索を通して送られれば、同時に到着できないだろう。しかも、軸索の長さは異なっているのが普通だ。そこで、「同時に発火するニューロンは、一緒に配線される」という法則が求めるとおりに、確実に入力を同時到着させるためには、インパルスの伝導速度を、長い軸索では増大させ、短い軸索では低下させる必要がある。
 ひとつのシナプスが引き起こす電位変化は、きわめて短い――わずか数ミリ秒だ。そのため、インパルス到着のタイミングには、非常に高度な正確性が求められる。脳の発達期に、脳内のあらゆる軸索において、遺伝子の指示だけを頼りに、軸索を通過するインパルス伝導の最適な速度が確定される可能性はあるだろうか? あるいは、回路のパフォーマンスを最適化するために、伝導速度が機能的な経験に従って調節されている可能性はどうだろう? 相当に離れたニューロン(たとえば、二つの大脳半球を連結する脳梁で隔てられたニューロン)間における伝導の遅延に影響するあらゆる要因を勘案すると、遺伝的特性だけでそれらすべての変数を説明できるとは考えにくい。軸索を通過するインパルスの到着時間に影響する要因は、胎児脳の発達期に伸び出した成長円錐のたどった個別の経路、軸索の直径、軸索の全長にランヴィエ絞輪を作るミエリン形成グリアの数、ミエリン鞘の厚さ、神経インパルスを発生させるイオンチャネルの種類と数をはじめ、数多い。軸索ケーブルの伝導速度をそれぞれの脳回路の必要条件に適合させるためには、機能的な経験によって、何らかの調節がなされている可能性のほうが高いだろう。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第15章 シナプスを超えた思考,講談社(2018),pp.501-502,小松佳代子(訳),小西史朗(監訳))
(索引:ミエリン形成グリア)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

ミエリン形成グリアは、軸索上のどこにランヴィエ絞輪を配置するかを制御することで、秒速1mから100mという神経インパルスの伝達速度の違いを制御することができる。(R・ダグラス・フィールズ)

ミエリン形成グリアの作用

【ミエリン形成グリアは、軸索上のどこにランヴィエ絞輪を配置するかを制御することで、秒速1mから100mという神経インパルスの伝達速度の違いを制御することができる。(R・ダグラス・フィールズ(19xx-))】

(1)ミエリン形成グリアは、軸索上のどこにランヴィエ絞輪を配置するかを決める。
 (a)化学物質を放出して、絞輪用、あるいは絞輪間部用の軸索膜を形成するよう軸索に指示する。
 (b)グリアがむき出しの軸索を包み込んで、ミエリンを形成し始めるときに、軸索膜のナトリウムチャネルを絞輪部分に物理的に集中させる。
(2)その結果、秒速わずか1メートルという遅い速度から、最速で秒速100メートルという速度の違いを実現している。

 「高速のインターネットとの類推から、軸索はすべて、できるかぎり速く情報を伝えていると考えるかもしれないが、そうではないのだ。私たちの末梢神経系や脳の回路を伝わるインパルスの速度は、軸索ごとに異なる。秒速わずか1メートルという遅い速度(ゆっくりとした歩行のペース)で、インパルスを伝導する軸索がある一方で、最速の軸索は、秒速100メートルでインパルスを伝える。これはどうしてなのか? 自然は、急いで実行しなくてはならないプロセスには、最速の情報伝達手段を使用する。たとえば、運動神経の軸索にインパルスを送って脚を動かして、空中に体を投げ出し、その跳躍の途中で、片方の足で体重を受け止めることを繰り返すとき――つまり走るときには、この最速の手段を使う。だが、すべての軸索が、同じような高速で伝導しないのはなぜだろう? さらに、何が軸索のインパルス伝導の速度を決定しているのだろうか?
 有髄軸索の通信速度を制御しているのは、グリアだ。ある軸索にどれほど多くの絶縁体を作るかを決定することだけでなく、軸索上のどこにランヴィエ絞輪を配置するかを決め、ナトリウムチャネルとカリウムチャネルを集積的に発現させて、絞輪と絞輪間部の領域を形成することによっても、伝導速度は制御されている。グリア細胞が軸索の周囲をより多くのミエリン層で被覆すれば、軸索の絶縁性は高まり、電位の喪失は少なくなるので、信号はより速く伝わる。ランヴィエ絞輪がリピータであるならば、軸索を通してインパルスを最高速度で中継するために最適な絞輪の数と間隔があることは、言うまでもない。グリアは、ランヴィエ絞輪の間隔を制御し、それによってインパルス伝導の速度も制御しているのだ。
 ミエリン形成グリアは、発達期や損傷後の修復において、軸索の建造を采配する現場監督である。絞輪を形成する位置を、グリアが指示する方法は二通りある。第一に、化学物質を放出して、絞輪用、あるいは絞輪間部用の軸索膜を形成するよう軸索に指示する方法、第二に、グリアがむき出しの軸索を包み込んで、ミエリンを形成し始めるときに、軸索膜のナトリウムチャネルを絞輪部分に物理的に集中させるという方法である。ミエリン形成グリアが学習の過程に関与しているとすれば、このグリアによるインパルス伝導の制御を活用しているに違いない。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第15章 シナプスを超えた思考,講談社(2018),pp.498-499,小松佳代子(訳),小西史朗(監訳))
(索引:ミエリン形成グリア)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

ミエリンは軸索の被覆部分を密封して漏電を防ぎ、神経インパルスは露出したランヴィエ絞輪から絞輪へ跳躍するように伝わっていく。有髄軸索のランヴィエ絞輪は、リピータの役割を担い、神経情報は最高で100倍も速く運ばれる。(R・ダグラス・フィールズ(19xx-))

ミエリンの役割

【ミエリンは軸索の被覆部分を密封して漏電を防ぎ、神経インパルスは露出したランヴィエ絞輪から絞輪へ跳躍するように伝わっていく。有髄軸索のランヴィエ絞輪は、リピータの役割を担い、神経情報は最高で100倍も速く運ばれる。(R・ダグラス・フィールズ(19xx-))】

 「一発の神経インパルスは、ぴんと張った糸を伝わっていく小さな波のように、軸索を伝わっていく急速な電位変化だ。軸索膜に存在するタンパク質の「バルブ」を開閉して、荷電したイオンを通過させている分子レベルの現象が、注意深くタイミングを合わせて連続で生成することによって、神経インパルスは発生する。荷電したイオンが軸索を出入りするときに、電荷の流れを反映して、軸索のその箇所の電位が短時間変化する。正の電荷を持つナトリウムイオンは、軸索膜のナトリウムチャネルと呼ばれるたんぱく質を介して軸索内へ流入する。正の電荷が蓄積するにつれて、軸索膜の電位は正に傾く。するとその直後に、正の電荷を持つカリウムイオンがカリウムチャネルから排出され、過剰な正の電荷が減少して、軸索は元の状態に戻り、また発火できるようになる。膜を介したこの電位変化の波は、軸索の先端に向って移動していく。
 このサイクルは、軸索がインパルスを発火するたびに繰り返される。軸索の一カ所でナトリウムイオンとカリウムイオンが出入りして、神経インパルスを発生される一サイクルに要する時間は、わずか1ミリ秒ほどだ。しかし、その波は軸索を伝って移動しながら次々に発生するので、わずか1ミリ秒とはいえ、遅れは次第に積み重なっていく。これが、軸索を通した情報の伝達速度を制限している。
 ところが、ミエリンとランヴィエ絞輪は、軸索におけるインパルスの伝導方法を抜本的に転換する。ミエリンを持たない無脊椎動物の軸索のように、このサイクルを逐一繰り返しながら軸索の先端まで情報を運ぶのではなく、有髄軸索のランヴィエ絞輪は、リピータ〔訳注:電気通信の中継器〕の役割を担い、長距離にわたる信号の伝送速度を大きく向上させている。有髄軸索では、神経インパルスは露出したランヴィエ絞輪のみで発生し、ミエリンで被覆された部分(絞輪間部)では発生しない。ミエリンは軸索の被覆部分を密封して漏電を防ぎ、電気は絞輪から絞輪へ跳躍するように伝わっていく。それぞれの絞輪は電子機器の中継器のように、シグナルを受け渡す。絞輪による一連の通信中継器を介すると、こうしたリピータがない場合よりも、情報は最高で100倍も速く運ばれる。ミエリンはただの絶縁体ではなく、ランヴィエ絞輪は誤って作られたものではない。どちらも、情報伝達を加速するためのきわめて精巧な電子機器なのだ。踏み石の上を元気よく飛び跳ねて小川を渡るときと、丸太の上を慎重に進む時では速度が異なるように、電気的インパルスは、無髄軸索をのろのろと進んでいくよりもはるかに速く、有髄軸索を絞輪から絞輪へと跳躍していく。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第15章 シナプスを超えた思考,講談社(2018),pp.496-498,小松佳代子(訳),小西史朗(監訳))
(索引:ミエリン,神経インパルス,ランヴィエ絞輪,有髄軸索)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

2020年5月16日土曜日

ミエリン形成グリアが知性や学習に関係があることを示唆する事実:オリゴデンドロサイトの数と脳梁の軸索の数への環境刺激の影響(若いラット,視覚野),脳梁領域への幼少期のネグレクトの影響などがある。(R・ダグラス・フィールズ(19xx-))

ミエリン形成グリア

【ミエリン形成グリアが知性や学習に関係があることを示唆する事実:オリゴデンドロサイトの数と脳梁の軸索の数への環境刺激の影響(若いラット,視覚野),脳梁領域への幼少期のネグレクトの影響などがある。(R・ダグラス・フィールズ(19xx-))】

ミエリン形成グリアが知性や学習に何らかの関係を持ちうる事実
 (a)病気や毒素、感染によるミエリンの損傷は、多くの神経学的な障害を引き起こす。傷害や疾患のあとには、電気的コミュニケーションと機能の回復のために、ミエリンが必ず修復されなくてはならない。
 (b)オリゴデンドロサイト
  刺激の豊かな環境で成育された若いラットの視覚野では、オリゴデンドロサイトの数が27~33パーセントも増加する。その働きは、軸索の周囲を被覆して密閉し、電流の漏出を防ぐことである。
 (c)脳梁の軸索の数
  刺激の豊かな環境で育ったラットでは、脳梁のミエリンで被覆された軸索の数も増加していた。脳梁は、脳の左右両側を連結する軸索の太い束である。
 (d)幼少期のネグレクトの影響など
  幼少期にネグレクトに苦しんだ子供では、脳梁領域が17パーセント減少することが、MRIスキャンによって示されている。なかでも最も意外だったのが、統合失調症やうつ病を含むある種の精神障害を患う人たちの脳スキャンでも、白質の発達が低下していることを明かした最近の発見である。灰白質ではなく、白質である。

 「アストロサイトがニューロンを保護し、そのあらゆる要求に応えるために存在していることは認識されていたものの、それが情報処理や学習に一役買っているかもしれないとまでは、考えが及ばなかった。実験動物におけるアストロサイト数のどんな変化も、血管系の増加が示すのと同じ意味合いしか持たないと受け止められた。すなわち、豊かな環境が提供する精神的刺激の増加によって、ニューロンの要求が増大し、その要求を満たすために支持細胞が応答したにすぎないというのだ。
 とりわけ、ミエリン形成グリアが知性や学習に何らかの関係を持ちうるという発想は、通説からあまりにかけ離れていたので、真剣な考察の対象とはならなかった。神経科学者は、ミエリンの働きを理解していた。つまり、軸索の絶縁だ。電気工学を専攻する学生の大多数が、銅線を包むプラスチック製の絶縁体を研究するエレクトロニクス分野に魅力を感じないように、神経生物学の学生でミエリンに興味を持つ者はほとんどいない。彼らの情熱は、認知や学習、記憶などの秘密を解き明かすことに向けられている。ミエリン研究を行っているのはおもに、脱髄疾患を研究する医学者や生化学者だ。ヒト脳の半分は白質であるため、生化学者が破砕して均質化した脳組織から試験管内へ抽出したものの大半は、ミエリンである。また医師にとっては、ミエリンは間違いなく、常に研究の中心にある。なぜなら、傷害や疾患のあとには、電気的コミュニケーションと機能の回復のために、ミエリンが必ず修復されなくてはならないからだ。病気や毒素、感染によるミエリンの損傷は、多くの神経学的な障害を引き起こすが、情報処理や学習といった脳の中核的な仕組みには、ミエリンは無関係だと考えられていた。これは今なお支配的な見解だが、それも変わりつつある。
 では次に、見捨てられていた手がかりを順にたどってみよう。40年も前から、刺激の豊かな環境で成育された若いラットの視覚野では、オリゴデンドロサイトの数が27~33パーセントも増加することが知られていた。この奇妙な発見は、どうも辻褄が合わない。なにしろ、オリゴデンドロサイトはニューロンの情報処理に何の関係もないのだ。その働きは、軸索の周囲を被覆して密閉し、電流の漏出を防ぐことだけである。オリゴデンドロサイトは、シナプスとも、樹状突起とも、ニューロンの細胞体とも関連がない。
 この手がかりは、突拍子もなく感じられるかもしれないが、証拠はこれだけではない。裏付けはほかにもあるのだ。この奇妙な現象は、視覚野のグリアに限定されたものではなく、刺激の豊かな環境で育ったラットでは、脳梁のミエリンで被覆された軸索の数も増加していた。脳梁は、第11章で論じたとおり、脳の左右両側を連結する軸索の太い束だ。この脳梁を介する大脳半球間の連絡は、私たちの脳のデュアルプロセッサーを、単一の連動システムに統合するために欠かせない。ではなぜ、豊かな環境で成育された動物では、私たちの左右の脳を連結するこのケーブルを包んでいる絶縁体が増加し、この絶縁体を形成するオリゴデンドロサイトの集団が3分の1近くも数を増すのだろうか?
 この奇妙な現象は、下位のラット以外でも観察されている。刺激の豊かな環境で養育されたアカゲザルでも、脳梁に通常より多くのミエリンが発現する。この差異はさらに、学習および記憶の試験で、それらのサルの認知能力が向上していることとも相関していた。
 情報処理へのグリアの関与を示唆する同様の手がかりは、次々と現われており、それはヒトを対象とした研究でも同じだ。幼少期にネグレクトに苦しんだ子供では、脳梁領域が17パーセント減少することが、MRIスキャンによって示されている。なかでも最も意外だったのが、統合失調症やうつ病を含むある種の精神障害を患う人たちの脳スキャンでも、白質の発達が低下していることを明かした最近の発見である。精神を病んだ人たち、あるいはネグレクトに遭い、心を育むために必要とされる正常な刺激を奪われた子供たちで、萎縮することが予想される灰白質ではなく、白質が萎縮しているというのだ。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第15章 シナプスを超えた思考,講談社(2018),pp.480-482,小松佳代子(訳),小西史朗(監訳))
(索引:思考,記憶,グリア,シナプスを超えた思考,ミエリン形成グリア)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

ミエリン形成の大部分は、生後5年間のうちに起こるが、その後、成人期に達するまでの間に、大脳皮質の後方から前方に向って緩やかに進行し、最後に、判断や複雑な論理的思考に欠かせない大脳皮質領域に至る。(R・ダグラス・フィールズ(19xx-))

ミエリン形成グリア

【ミエリン形成の大部分は、生後5年間のうちに起こるが、その後、成人期に達するまでの間に、大脳皮質の後方から前方に向って緩やかに進行し、最後に、判断や複雑な論理的思考に欠かせない大脳皮質領域に至る。(R・ダグラス・フィールズ(19xx-))】

ミエリン形成グリア
 (a)ミエリン形成の大部分は、生後5年間のうちに起こる。
 (b)その後、成人期に達するまでの間に、大脳皮質の後方から前方に向って、緩やかな波を描くようにミエリン形成が進行する。
 (c)青年期までは、前脳のミエリン形成はまだ完全ではない。ミエリン形成が最後に完了するこの脳部位は、判断や複雑な論理的思考に欠かせない大脳皮質領域である。

 「ミエリン形成の大部分は、生後5年間のうちに起こるものの、その過程が成人早期まで続くことは、何十年も前から知られていた。これはなぜだろう? ミエリンがたんなる電気的絶縁体にすぎないのならば、なぜ出生前にその仕事が完了していたいのだろうか?
 出生後のヒト脳におけるミエリン形成の進み方には、興味深いパターンがある。完全なミエリン形成が最後に完了する脳領域は、より高次の認知機能にかかわる部分なのである。ヒト脳では、成人期に達するまでの間に、大脳皮質の後方(シャツ襟の位置)から前方(額の位置)に向って、緩やかな波を描くようにミエリン形成が進行する。この波状に進むミエリン形成は、よく知られたティーンエイジャーに特有の衝動的行動の一因かもしれない。青年期までは、前脳のミエリン形成はまだ完全ではない。ミエリン形成が最後に完了するこの脳部位は、判断や複雑な論理的思考に欠かせない大脳皮質領域なのだ。またここは、前頭葉切截術(ロボトミー)で外科医によって断ち切られた部位でもある。ロボトミーを受けた患者は、複雑な決断、計画の立案、あるいは見通しを立てることなどができなくなる。この前脳領域へつながる伝達路の形成が完成していないとすれば、青年たちは、成人脳が複雑な状況下で理性的な意思決定を行うことを可能にしている完全な神経回路を持ち合せていないことになる。
 興味深いことに、多くの社会で個人に完全な法的責任が認められる年齢は、思春期ではなくもう少しあとで、それは偶然にも、前脳のミエリンが完成する時期(20歳前後)とほぼ一致している。つまり、ミエリン形成グリアは、法的責任を認める年齢に生物学的根拠を提供していると言える。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第15章 シナプスを超えた思考,講談社(2018),pp.476-477,小松佳代子(訳),小西史朗(監訳))
(索引:思考,記憶,グリア,シナプスを超えた思考,ミエリン形成グリア)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

2020年5月3日日曜日

シナプスの情報をアストロサイトが拾い上げ、「もうひとつの脳」の中のグリア回路網を通して流れ、別のアストロサイトからの神経伝達物質放出を促すことによって、別の場所でシナプスの制御に活用している。(R・ダグラス・フィールズ(19xx-))

アストロサイト

【シナプスの情報をアストロサイトが拾い上げ、「もうひとつの脳」の中のグリア回路網を通して流れ、別のアストロサイトからの神経伝達物質放出を促すことによって、別の場所でシナプスの制御に活用している。(R・ダグラス・フィールズ(19xx-))】

 「アストロサイトは、ニューロンのような様式で、遠くまで迅速に情報を送信する必要がないので、電気的インパルスを発火しないのだと、私たちは今では理解している。そのためアストロサイトは、電気的なコミュニケーションには手を出さないが、ニューロンの持つより興味深い第二の交信方法、すなわち神経伝達物質によるコミュニケーションを存分に活用し、そこに関与している。
 アストロサイトの活動は、脳の比較的大きな領域に及ぶので、シナプスへの影響も広範囲にわたるはずである。とはいえ、あるシナプスの情報が一個のアストロサイトによって拾い上げられて、「もうひとつの脳」のなかのグリア回路網を通して流れ、別のアストロサイトからの神経伝達物質放出を促すことによって、神経回路で直接結合していない遠くのシナプスにおけるニューロンのコミュニケーションを調節している可能性については、21世紀初頭に至るまで検証されていなかった。この仮説は、2005年にフィリップ・ヘイドンのグループによって証明された。彼らの研究により、アストロサイトは海馬のシナプス活動にカルシウム上昇によって応答するが、それが次に、発火した近傍のシナプスだけでなく、同じニューロンの遠く離れた別のシナプスでも伝達強度を調節していることが確認された。脳内の遠い場所を結んで、ニューロン回路の外側からシナプス伝達を調節しているアストロサイトはまさしく、制御装置にほかならなかった。「ニューロンの脳」の情報は、「もうひとつの脳」によって傍受され、「ニューロンの脳」の別の場所でシナプスの制御に活用されていたのだ。私たちの中にある二つの心がこうして出会うことで、「ニューロンの脳」だけでは実現できないどんな働きが可能になるのだろうか?
 離れたシナプスの強度を調節するこの現象(異シナプス性抑制として知られる)は、騒々しいレストランの中で会話を続けるときに、私たちの誰もが経験することによく似ている。食事相手の話をいつも以上に注意深く聴き取ると同時に、厨房からの雑音や周りで食事をしている人たちの間で交わされる会話は耳に入れないようにする。このような精神集中は、私たちを取り巻く環境の中で、すべての騒音から重要なシグナルを選別するためには不可欠である。これと同じことが、私たちの海馬でも起こっている。あなたが学習したいと望んでいる新しい情報を運んでくる入力のなされるシナプスは、長期増強によって強化される一方、注意をそらす邪魔な情報を別のシナプスから同じニューロンに伝えている入力は抑制されているのだ。おなたはおそらく、この抑制された背景情報を記憶していないだろう。」(中略)「アストロサイトが、周囲にあるシナプスを抑制して、私たちの記憶中枢に対する特定の入力を際立たせている細胞であることを知って、多くの人が衝撃を受けた。もしアストロサイトが、シナプスの集中調節という重要な働きができなくなったら、どうなるだろうか? それは学習や注意、さらには精神状態にどう影響するのか? アストロサイトが、独自のグリアネットワークを介した交信方法を用いて、シナプス強度を調節していると判明したことも、同じように驚きだった。このネットワークは、ニューロン間を配線でつないだ接続回線に拘束されることなく、神経ネットワークの外側で作動している。この携帯電話のようなアストロサイト網については、私たちは何も知らないも同然だ。このネットワークの境界は何なのか? それらは修正可能なのか――言い換えれば、アストロサイトは精神的経験に従って変化し、学習するのか? アストロサイトが実際に、学習においてネットワークの結合強度を変更していることを示す証拠が、新たな研究で得られ始めている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第14章 ニューロンを超えた記憶と脳の力,講談社(2018),pp.469-472,小松佳代子(訳),小西史朗(監訳))
(索引:アストロサイト,グリア回路網,神経伝達物質)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)



(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

2018年8月14日火曜日

グリアは脳内のいたるところで、シナプスを再構築しているのではないだろうか。例として、病原菌を殺傷する能力を持ったミクログリアは、視神経回路を再配線している。小脳のバーグマングリアの機能も、解明されつつある。(R・ダグラス・フィールズ(19xx-))

ミクログリア

【グリアは脳内のいたるところで、シナプスを再構築しているのではないだろうか。例として、病原菌を殺傷する能力を持ったミクログリアは、視神経回路を再配線している。小脳のバーグマングリアの機能も、解明されつつある。(R・ダグラス・フィールズ(19xx-))】

グリアによる脳の再構築
 (a)視床下部、出産、乳汁分泌、水分量調節などに関連しているが、その他、脳内のいたるところでシナプスを再構築しているのではないだろうか。
 (b)例えば、ミクログリアについて。
  (b1)ニューロンをつなぎ合わせている細胞外マトリックスタンパク質を溶解する、強力なタンパク質分解酵素を持っている。これによって、密集している脳細胞の間を縫って感染部位に駆けつけ、侵入してきた病原体を殺傷できる。
  (b2)損傷後や、生後間もない時期に、私たちの眼から伸びた視神経が視覚経験に導かれて脳の適切な部位に結合する際に、ミクログリアがニューロンから不要なシナプスを剥ぎ取って、神経回路を再配線していることが判明している。
 (c)小脳のニューロンは、バーグマングリアと称されるアストロサイトにしっかりと包み込まれている。このアストロサイトも、つるのような触手を動かすことができる。このグリアの機能も、解明されつつある。

 「ミクログリアは、ニューロンをつなぎ合わせている細胞外マトリックスタンパク質を溶解する強力なタンパク質分解酵素を持っている。密集している脳細胞の間を縫って感染部位に駆けつけ、侵入してきた病原体を殺傷できるのは、このためだ。最近になって、この感染と闘う武器を使って、損傷後や生後間もない時期に、私たちの眼から伸びた視神経が視覚経験に導かれて脳の適切な部位に結合する際に、ミクログリアがニューロンから不要なシナプスを剥ぎ取って、神経回路を再配線していることが判明した。この小さなグリア細胞は、病気に関心を寄せている者を除き、大部分の神経科学者に見逃されてきた。というのも、ミクログリアは、脳内で病原体を探し出して貧食する免疫細胞にすぎないと見なされていたからだ。ところが今では、このきわめて重要な役割に加えて、ミクログリアが神経回路を再配線して、学習を可能にするために一役買っていることもわかっている。
 グリアによる脳の再構築は、視床下部において十分に立証され、ヒトの行動と結びつけられているが、視床下部という特定の脳部位や、これまで考察してきた出産、乳汁分泌、水分量調節のような現象に限定されると推定すべき理由があるだろうか? それよりもむしろ、グリアは脳内のいたるところでシナプスを再構築しているが、さまざまな精神機能を制御するグリアのやり方は非常に巧妙なために、現在の荒削りな観察手法では捉えきれていないのだと結論するほうが妥当だろう。
 シナプスの物理的リモデリングは、学習に関係する他の脳領域でも発見され始めている。脳の後方に位置する小脳は、身体運動の制御や、ゴルフスイングの上達のような身体的技能の学習に不可欠な脳部位だ。小脳のニューロンは、バーグマングリアと称されるアストロサイトにしっかりと包み込まれている。このアストロサイトも、《つる》のような触手を動かすことができる。科学者たちは小脳において、ニューロンとグリアの間で伝達され、シナプスでのグリアの運動を制御しているシグナルを解明し始めている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第13章 「もうひとつの脳」の心――グリアは意識と無意識を制御する,講談社(2018),pp.452-454,小松佳代子(訳),小西史朗(監訳))
(索引:ミクログリア,バーグマングリア)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

にほんブログ村 哲学・思想ブログへ

脳科学ランキング
ブログサークル

2018年8月12日日曜日

睡眠中の脳波を発生させている神経活動の周期を、アストロサイトが協調させている。(R・ダグラス・フィールズ(19xx-))

アストロサイト

【睡眠中の脳波を発生させている神経活動の周期を、アストロサイトが協調させている。(R・ダグラス・フィールズ(19xx-))】

(1)外部からいっさい刺激を与えていないのに、視床内部のアストロサイト網を、カルシウムウェーブが周期的に駆け抜ける。
(2)隣接するアストロサイトをカルシウムウェーブが通過するのに合わせて、ニューロンの電位が変化する。
 (2.1)アストロサイトが、神経伝達物質グルタミン酸を放出する。
 (2.2)グルタミン酸が、ニューロンのグルタミン酸受容体を活性化する。
 (2.3)この作用が、電位応答を誘発する。

 「シナプス相互作用に立脚したニューロン説の枠外で活動しながら、ニューロンの集団を集合体へと統合している存在がほかにもある――それはアストロサイトだ。クルネリらは、視床から得た切片を、アストロサイトによって選択的に取り込まれるカルシウム感受性蛍光色素の溶液に浸した。彼らが観察していると、外部からいっさい刺激を与えていないのに、視床内部のアストロサイト網をカルシウムウェーブが周期的に駆け抜けた。視床ニューロンに電極を刺入して、細胞内電位の変化を記録すると、隣接するアストロサイトをカルシウムウェーブが通過するのに合わせて、ニューロンの電位が変化していることがわかった。睡眠中の脳波を発生させている神経活動の周期を、アストロサイトが協調させていたのだ。
 ニューロンが示したこの電気的応答は、カルシウムウェーブが通過するときにアストロサイトが放出する神経伝達物質グルタミン酸によって引き起こされていた。このグルタミン酸が、ニューロンのグルタミン酸受容体を活性化し、この作用が電位応答を誘発して、ニューロンにインパルス発火を刺激していたのだった。
 この研究から導かれる驚くべき結論は以下のとおりだ。睡眠中の脳活動においてこのような広範囲の周期を制御しているのは、大脳皮質ではなく、さらにはニューロンさえも、主導権を握ってはいない。アストロサイトを通して流れる活動波が、視床ニューロンの大集団を結びつけて、その神経活動を競技場の観客の動きのように協調させている。てんかん発作や病気の際に、脳波の広範な変化が認められるのと同じように、アストロサイト内のカルシウム活動の波は、ニューロン内の電気的な活動と同期して振動している。アストロサイトは電気信号で連絡するのではなく、化学的メッセージを拡散することによって相互に信号を送り合っており、さらにはニューロンどうしがシナプスを介した連絡に用いているのと同じ神経伝達物質を放出することによって、ニューロンの発火を調節している。「もうひとつの脳」は、毎晩私たちが枕に頭を乗せて休んでいるときにも、睡眠の制御に精を出しているのだ。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第13章 「もうひとつの脳」の心――グリアは意識と無意識を制御する,講談社(2018),pp.445-447,小松佳代子(訳),小西史朗(監訳))
(索引:アストロサイト,カルシウムウェーブ,グルタミン酸)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

にほんブログ村 哲学・思想ブログへ

脳科学ランキング
ブログサークル

2018年8月9日木曜日

人生の約3分の1を占める睡眠は、きわめて能動的な状態である:(a)意識的、無意識的な出来事が、見直され、関連づけられ、保管され、破棄される。(b)グリアに関連する数百の遺伝子が合成されている。(R・ダグラス・フィールズ(19xx-))

睡眠

【人生の約3分の1を占める睡眠は、きわめて能動的な状態である:(a)意識的、無意識的な出来事が、見直され、関連づけられ、保管され、破棄される。(b)グリアに関連する数百の遺伝子が合成されている。(R・ダグラス・フィールズ(19xx-))】

 人生の約3分の1を占める睡眠は、単なる休止状態ではなく、きわめて能動的な精神作用である。
(1)睡眠中は、身体を動かなくさせて、自由奔放な脳内の活動によって、身体が危険な運動を起こさないようにしている。
(2)意識的、無意識的な出来事が、情報の種類や、別の出来事との関連性、内面的な心情によって判断した重要さの度合いなどの要因に従って、見直され、仕分けされ、関連づけられ、再考され、脳内の一つの部位から大脳皮質のさまざまな場所に移されて保管され、さらには破棄される。
(3)睡眠中の脳内では、数百の遺伝子が合成されている。これら遺伝子の多くが、グリアにしか見つからない。例として、レム睡眠中の脳内で最も活発に合成される遺伝子のいくつかは、ミエリンを形成するオリゴデンドロサイトに存在する遺伝子だ。

 「私たちの無意識と意識の中間には、睡眠という変容した精神状態がある。もしあなたが75歳まで生きるとしたら、そのうちの25年ぐらいは、おそらく眠って過ごすことになるだろう。人生の大きな割合を占めるその期間に、脳内で何が起こっているのかは、知ることも理解することもほとんどできない。睡眠は私たち自身の不可解な、それでいて神秘的な部分だ。睡眠がたんなる夜間の休止状態、つまり、暗闇のなかで体内システムの活動を停止しているにすぎないのだとしたら、日中に元気よく身体活動ができるように、エネルギーを節約するための合理的な戦略として納得できる。睡眠は、長い時間操作がないと、節電のためにラップトップコンピューターが一時的な休止状態になるようなものかもしれない。ところが、睡眠中にヒトの(さらに言えば、動物の)脳内で起こっていることは、休止状態とはかけ離れている。睡眠中、脳は忙しく働いているのだ。それは変容した精神状態だが、けっして不活発ではない。睡眠は能動的な精神作用であり、その過程で一部の脳回路が身体を動かなくさせて、私たちの精神が夜間の自由奔放な空想のなかで躍動できるようにしている。このように体が動かせないおかげで、私たちはベッドから飛び出して、夢の中の追手から走って逃げたり、夢見心地で体験しているどんな空想も追いかけていったりせずにすむのだ。
 膨大な量の活動がさまざまな脳回路を往来するために、夜間の無意識な生活における脳内活動には、周期とパターンが作り出されている。そのなかで、その日にあった出来事(意識的および無意識的の両方)が見直され、仕分けされ、関連づけられ、再考され、保管され、さらには破棄される。それらの記憶は、そこに含まれる情報の種類や、別の出来事との関連性、内面的な心情によって判断した重要さの度合いなどの要因に従って、脳内の一つの部位(訳注;海馬)から大脳皮質のさまざまな場所に移されて保管される。この変容した意識状態は、おそらくあなたの存在の三分の一ほどを占めるだろうが、科学にとって今なお謎であり、研究するのは難しい。私たちが眠っているとき、グリアには何が起こっているのだろうか? さらに興味深いのは、私たちが睡眠と呼んでいるこの精神状態の制御に、グリアは関与しているのかという疑問だ。
 遺伝子チップ(何千もの遺伝子の活動を同時にモニターすることを可能にした新しい研究手法)を用いて、睡眠の異なる位相でオンオフする脳組織内の遺伝子の変化を検出した研究から、ある洞察が浮び上がってきた。この研究によれば、レム睡眠とノンレム睡眠の各位相で、脳内では数百の遺伝子が合成されているという(レム睡眠とは、「急速眼球運動睡眠」とも称され、夢を見ている睡眠の位相である)。最近判明した驚くべき事実は、睡眠中に合成される遺伝子の多くが、グリアにしか見つからないことだった。実際に、レム睡眠中の脳内で最も活発に合成される遺伝子のいくつかは、ミエリンを形成するオリゴデンドロサイトに存在する遺伝子だ。その理由は、誰にもわからない。しかしこれは、私たちが眠っている間も、グリアはけっして眠っていないことを示す有力な証拠である。グリアは、私たちがまだ理解していない何らかの仕事に精を出しているのだ。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第13章 「もうひとつの脳」の心――グリアは意識と無意識を制御する,講談社(2018),pp.442-445,小松佳代子(訳),小西史朗(監訳))
(索引:睡眠,グリア,ミエリン,オリゴデンドロサイト)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

にほんブログ村 哲学・思想ブログへ

脳科学ランキング
ブログサークル

2018年7月29日日曜日

アストロサイトは探査し、構造的に脳を再構築し、ニューロン間の結合を変化させる。(R・ダグラス・フィールズ(19xx-))

アストロサイト

【アストロサイトは探査し、構造的に脳を再構築し、ニューロン間の結合を変化させる。(R・ダグラス・フィールズ(19xx-))】
 アストロサイトはあちこち探査しながら、構造的に脳を再構築し、ニューロン間の結合を変化させている。「もうひとつの脳」は、意識的な心のまったく外側で活動しながら、「ニューロンの脳」の回路を形作っている。例えば、
 (a)細胞触手でニューロンの間を探っている。その触手を滑らかに伸び縮みさせて、ニューロン間を出入りしながら、脳の神経回路を変化させている。
 (b)シナプス周囲からそのグリア触手を引き抜くと、ニューロンの露出部分が増加する。
 (c)触手を退縮させると、シナプス間隙を間近で取り囲んでいたときほど、神経伝達物質をすばやく取り込むことができなくなる。その結果、細胞外間隙に神経伝達物質を蓄積させて、シナプス伝達に変化をもたらす。
 (d)数種類の神経活性物質(現在では、グリア伝達物質と呼ばれている)を放出し、ニューロンのシナプス上にある神経伝達物質受容体を刺激する。
 (e)シナプス伝達を直接調節できる。そこには、アミノ酸のタウリンやATP、D-セリンなど、ニューロンがシナプス伝達で使用しているのと同じ物質が含まれる。

 「私たちが水分を摂取する量と頻度は、その時々で大きく異なるにもかかわらず、脳は体内の水分量を厳密な範囲内に調節している。水は生命維持のために食糧よりも重要で、いかなる生物の体内でも、常に適切なレベルに維持されていなければならない。水分が欠乏すると、数時間のうちに身体機能にも精神機能にも支障が出る。脱水が続けば、数日のうちに命を落とすことになり、ほとんどの病気より急速に死に直結する。
 私たちの体が脱水に対処するひとつの方策に、抗利尿ホルモン(ADH)の血流中への放出がある。このポリペプチドホルモンは、視床下部ニューロンから分泌され、腎臓に作用して尿の排出量を減らし、体内に蓄えた貴重な水分の減少を食い止める。喉が渇いた動物では、視床下部のシナプスに存在するグリアが驚くべき方法で応答することを、解剖学者らが観察した。
 この無意識の脳で働くグリアに関する最近の研究から、別の新事実、つまりグリアが動けることが明らかになっている。今この瞬間にも、脳内のアストロサイトは活動していて、その細胞触手でニューロンの間を探っている。その触手を滑らかに伸び縮みさせて、ニューロン間を出入りしながら、アストロサイトは脳の神経回路を変化させているのだ。グリアにこうした働きがあることに気づく前でさえ、脳細胞に関する私たちの概念には、重要な何かが欠けているといつも感じていた。そこには、あまりにも動きがなさすぎた。一枚の基板上に無数のはんだ接合で固定された超小型回路によく似て、ニューロンは脳内でシナプス結合の網み目の中につなぎ留められている。このように固定されて動きの取れない状態にあるニューロンは、人工的で不自然に見える。これとは対照的に、束縛されていないグリアの細胞触手は、脳内で絡まるように結びついている神経線維網の間を、自在に動き回って探りながら、脳組織を細胞運動で活性化している。アストロサイトはあちこち探査しながら、構造的に脳を再構築し、ニューロン間の結合を変化させている。「もうひとつの脳」は、意識的な心のまったく外側で活動しながら、「ニューロンの脳」の回路を形作っているのだ。
 アストロサイトは、視床下部のシナプスにおいてこのような細胞リモデリングを行うことによって、渇きに応じてシナプス特性を変化させられる。シナプス周囲からそのグリア触手を引き抜くと、ニューロンの露出部分が増加する。また、触手を退縮させたアストロサイトは、シナプス間隙を間近で取り囲んでいたときほど、神経伝達物質をすばやく取り込むことができなくなる。このような神経伝達物質の排出の遅れは、細胞外間隙に神経伝達物質を蓄積させて、シナプス伝達に変化をもたらす。神経科学者ステファン・ウエレらはフランスのボルドーで、微小電極を用いて視床下部のシナプス機能を研究し、動物の給水を断つと、シナプス周辺のアストロサイトが形を変えて、シナプス電位が変化することを見出した。グリア触手の先端による同じようなシナプス電位の調節は、筋肉のほかの部位でも起こっているだろうと、彼らは示唆している。
 シナプスを出入りして探り続けるグリア触手は、別の方法でもシナプス伝達を調節できる。それは、シナプスに作用する物質の放出である。視床下部では、アストロサイトは数種類の神経活性物質(現在では、グリア伝達物質と呼ばれている)を放出し、ニューロンのシナプス上にある神経伝達物質受容体を刺激している。グリアはこうして、多様な神経伝達物質を放出するだけで、シナプス伝達を直接調節できる。そこには、アミノ酸のタウリンやATP、D-セリンなど、ニューロンがシナプス伝達で使用しているのと同じ物質が含まれる。アストロサイトから放出されるこれらの物質はそれぞれ、シナプス伝達に異なる効果を及ぼす。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第13章 「もうひとつの脳」の心――グリアは意識と無意識を制御する,講談社(2018),pp.435-437,小松佳代子(訳),小西史朗(監訳))
(索引:アストロサイト)

もうひとつの脳 ニューロンを支配する陰の主役「グリア細胞」 (ブルーバックス)


(出典:R. Douglas Fields Home Page
R・ダグラス・フィールズ(19xx-)の命題集(Collection of propositions of great philosophers)  「アストロサイトは、脳の広大な領域を受け持っている。一個のオリゴデンドロサイトは、多数の軸索を被覆している。ミクログリアは、脳内の広い範囲を自由に動き回る。アストロサイトは一個で、10万個ものシナプスを包み込むことができる。」(中略)「グリアが利用する細胞間コミュニケーションの化学的シグナルは、広く拡散し、配線で接続されたニューロン結合を超えて働いている。こうした特徴は、点と点をつなぐニューロンのシナプス結合とは根本的に異なる、もっと大きなスケールで脳内の情報処理を制御する能力を、グリアに授けている。このような高いレベルの監督能力はおそらく、情報処理や認知にとって大きな意義を持っているのだろう。」(中略)「アストロサイトは、ニューロンのすべての活動を傍受する能力を備えている。そこには、イオン流動から、ニューロンの使用するあらゆる神経伝達物質、さらには神経修飾物質(モジュレーター)、ペプチド、ホルモンまで、神経系の機能を調節するさまざまな物質が網羅されている。グリア間の交信には、神経伝達物質だけでなく、ギャップ結合やグリア伝達物質、そして特筆すべきATPなど、いくつもの通信回線が使われている。」(中略)「アストロサイトは神経活動を感知して、ほかのアストロサイトと交信する。その一方で、オリゴデンドロサイトやミクログリア、さらには血管細胞や免疫細胞とも交信している。グリアは包括的なコミュニケーション・ネットワークの役割を担っており、それによって脳内のあらゆる種類(グリア、ホルモン、免疫、欠陥、そしてニューロン)の情報を、文字どおり連係させている。」
(R・ダグラス・フィールズ(19xx-),『もうひとつの脳』,第3部 思考と記憶におけるグリア,第16章 未来へ向けて――新たな脳,講談社(2018),pp.519-520,小松佳代子(訳),小西史朗(監訳))
(索引:)

R・ダグラス・フィールズ(19xx-)
R・ダグラス・フィールズの関連書籍(amazon)
検索(R・ダグラス・フィールズ)

にほんブログ村 哲学・思想ブログへ

脳科学ランキング
ブログサークル

人気の記事(週間)

人気の記事(月間)

人気の記事(年間)

人気の記事(全期間)

ランキング

ランキング


哲学・思想ランキング



FC2