ラベル 1944_イーヴァル・エクランド の投稿を表示しています。 すべての投稿を表示
ラベル 1944_イーヴァル・エクランド の投稿を表示しています。 すべての投稿を表示

2021年11月14日日曜日

古典力学系は、十分長い時間が経てば、初期状態にいくらでも近い状態に回帰する(ポアンカレの定理)。では何故、不可逆性が生じるのか。十分長い時間とは宇宙の年齢など比較にならないほど長い時間だからである。(イーヴァル・エクランド(1944-))

不可逆性の言説

古典力学系は、十分長い時間が経てば、初期状態にいくらでも近い状態に回帰する(ポアンカレの定理)。では何故、不可逆性が生じるのか。十分長い時間とは宇宙の年齢など比較にならないほど長い時間だからである。(イーヴァル・エクランド(1944-))

「奇妙なことに、ランダム性は素粒子よりずっと大きな尺度、たとえば人間の尺度でもあら われる。これは異なる種類のランダム性で、カオス理論と結びついている。そこであつかうの は、一個の電子がこの道でなくあの道を通るといった明確な原因なしに起こる出来事ではな い。そうではなく、さいころを振ったらあの目ではなくこの目が出たというようなごく小さな 原因から起こる出来事である。そう思ってみると、(停留作用を原理を含む)古典力学は、 (量子力学とファインマンの確率に支配された)素粒子の尺度と、(熱力学と増大しつつある エントロピーに支配された)人間尺度の間の、現実世界のごく薄い層でしか成り立っていない ように見える。」(中略)「このパラドックスを理解する鍵は、いうまでもなく、関与してい る時間の長さにある。イマジナムが箱に戻るのを見るには、パンドラは非常に長い時間、それ こそ宇宙の予測寿命が尽きてもなお待ち続けるつもりでいなければならない。それより短い時 間、わずか数十億年かそこらの間に、そのようなことが起こる可能性はこれっぽっちもない。 もちろん数学者ならそんなことは意に介さないが、人間、ことに近々釈明の必要に迫られるで あろうパンドラにとっては大問題だ。ポアンカレの定理がいっていることは真実だが、わたし たちの役には立たない。人間の尺度で時の矢があらわれる理由は、わたしたちのあつかう物体 が大きな集合体で、過去に戻る気配をちらとでも見せることができる前にはやばやと消滅して しまうからなのだ。

 というわけで、これが一つの不可逆性の源流である。」 (イーヴァル・エクランド(1944-)『可能な中で最善な世界』(日本語名『数学は最善世界 の夢を見るか?』)第6章 パンドラの箱、pp.187,190-191、みすず書房(2009)、南條郁 子(訳))






数学は最善世界の夢を見るか? 最小作用の原理から最適化理論へ [ イーヴァル・エクランド ]






古典力学の第2不確定性原理:n粒子系において情報は他粒子に移せない。他の粒子の不確定度を増やすことで、ある粒子の不確定度を減らすことには限界値がある。(限界値は、n粒子系の最初の不確定性領域に応じて決まる。)(ミハイル・グロモフ(1943-))

古典力学の第2不確定性原理

:n粒子系において情報は他粒子に移せない。他の粒子の不確定度を増やすことで、ある粒子の不確定度を減らすことには限界値がある。(限界値は、n粒子系の最初の不確定性領域に応じて決まる。)(ミハイル・グロモフ(1943-))

「ではもう一歩進んで、一個ではなく何個かの球が同じビリヤード台で動いているようすを 想像しよう。今、N個の球がにぎやかに動きまわっているとする。この場合は、もはやどの球 もクッション上で衝突してからつぎに衝突するまで直線にそって動くとはいえない。また、そ れぞれの球の速さが動きだしてからずっと一定であるともいえない。球は台の上で他の球と衝 突するかもしれず、衝突すれば、互いに異なる方向に異なる速さで遠ざかるだろう。衝突後の 速度(方向と速さ)は、クッションに当たって跳ね返るときと同じように完全に決まるので、 N個の球の軌道全体は最初の位置と速度によって完全に決定される。 これらの球の初期位置と初速度を完全に正確に知ることはできない。それぞれの球につい て、測定値のまわりにいくらかの不確定性領域があるからだ。この領域の面積を先のように最 初の「不確定度」と呼ぼう。k個目の球の最初の不確定度をukと書くと、各 ukは球が一個のときの同じように解釈される。つまりukの値が 小さいほど、最初の位置と速度は高い精度で測定されたことを意味する。 第一不確定性原理は一つ一つのukにではなく、それらの和 u1 +u2+......uNに適用される。この和をUと書き、「全不確定度」と 呼ぼう。詳しくいうと、これは初期時刻t=0(運動の開始時)のおける全不確定度のことだ が、第一原理によればこの量はその初期値に固定されているので、未来の任意の時刻tにおい て全不確定度はつねに最初の値Uに等しくなっている。 運動がこれだけ複雑になってもUの値が一定であり続けるとは、これまた凄いことである (たくさんの球が互いにぶつかり合いながら台の上を動きまわっているようすを思い浮かべて ほしい)。だがここでかすかな希望が頭をもたげる。なるほどUは一定でなければならない が、個々のukは違う。それらの値は変動しうる。いや、実際に変動している。 いいかえれば、それらは互いに補い合わなければならない。つまり一つが減れば他のどれかが 増えなければならない。そこで今、わたしたちの関心がすべての球のうちの一個だけ、たとえ ば一番目の黒い球だけに集中していて、残りの白い球はどうでもよいとしよう。このとき、黒 い球の不確定度u1を減らして他の白い球の不確定度を増やすようなビリヤード 台を作ることはできないだろうか。それができればu1が減っても u2、u3、......、uNが増えるから、全不確定度 u1+u2+......uNは初期値Uのままに固定される。白 い球に関してわかることははじめより少なくなるが、そんなことはどうでもいい、だってわた したちは(たとえばその球をポケットに入れなければならないという理由で)黒い球にしか関 心がないのだから。 これは第一原理を回避するためにやってみたくなる方法である。白い球の情報を黒い球に移 すのだ。しかし、残念ながらこれはできない。それがグロモフの発見した第二不確定性原理の 本質的内容である。 古典力学の第二不確定性原理――情報は移せない。N個の球について最初の不確定性領域があ たえられたとき、黒い球の不確定性領域を閉じこめるような円の半径はある長さrより小さく できない。 いくつかのコメントをしておこう。まず、この命題に出てくるrという数は、N個の球の最初 の不確定性領域に《応じて》決まるということだ。」 (イーヴァル・エクランド(1944-)『可能な中で最善な世界』(日本語名『数学は最善世界 の夢を見るか?』)第5章 ポアンカレとその向こう、pp.175-177、みすず書房(2009)、南 條郁子(訳))







数学は最善世界の夢を見るか? 最小作用の原理から最適化理論へ [ イーヴァル・エクランド ]





古典力学の第1不確定性原理:情報は創出されない。不確定度を減らすことができるのは測定だけであり、計算では減らせない。(1粒子の古典力学系で、初期条件の不確定度を位相空間内の体積で表すと、時間が経過しても不確定度は変わらない。)(ミハイル・グロモフ(1943-))

古典力学の第1不確定性原理

情報は創出されない。不確定度を減らすことができるのは測定だけであり、計算では減らせない。(1粒子の古典力学系で、初期条件の不確定度を位相空間内の体積で表すと、時間が経過しても不確定度は変わらない。)(ミハイル・グロモフ(1943-))


「ポアンカレの時代、これらの困難は乗り越えられなかった。それから約一世紀を経た今 日、必要な数学の道具が発達したおかげで、停留作用の原理は非常に一般的な系に適用できる ようになった。その一方で、思いがけない結果にも遭遇した。その中で最たるものは、一九八 〇年にミハイル・グロモフが発見した古典力学の不確定性原理である。量子物理におけるハイ ゼンベルクの不確定性原理はよく知られているが、それに類した原理が古典物理でも成り立っ ているなど誰が思ってみただろう。これが専門家の小さなサークルの外でも知られるように なったのはごく最近のことにすぎないが、ひとたび科学者の間に広まれば、かつての量子版不 確定性原理と同じくらい注意を引くことは間違いないとわたしは思っている。ともかくこれは 現代幾何学と停留作用の原理のサクセス・ストーリーなので、ぜひここで紹介しておきたい。  定理はビリヤードを用いて述べることにしよう。凸型のビリヤード台の縁にそってクッショ ンが張ってあり、それに当たって跳ね返る一個の球の運動を考える。このとき、どの軌道もx とyのペアで完全に特定できることは前に見たとおりだ。ここではxはクッション上の衝突点の 位置、yはそのときの入射角である。最初の衝突( x1,y1)に よって(x2,y2)が決まり、それによって (x3,y3) が決まり......とつぎつぎに衝突が決まっていくので、一 つの軌道を360×90の長方形内の無限点列としてあらわすことができる。これは第4章で、軌道 の二つ目の幾何学的表示と呼んだものである。

 しかしここでは新しい考え方を導入する。まず、最初のx1と y1をかぎりなく正確に測定するのは、現実にはできないそうだかであることを 認めよう。どんなに精密に測っても測定器具に起因する精度限界があり、それより詳しくは測 れないからだ。そこで、最初の衝突点の真の位置xと真の入射角度yは、わたしたちが測定した x1とy1そのものではなく、x1とy1 を含むある区間の中にあると考えられる。今、xとyのペア(x,y)を360×90の長方形の点で あらわせば、最初の衝突の真の値(x,y)は、(x1,y1)を中心 とする長さΔx1,幅Δy1の小さな長方形の中にある。この小さな長 方形を、測定値(x1,y1)のまわりの「不確定性領域」と呼ぼ う。不確定性領域が小さければ小さいほど、わたしたちの測定は正確だったということにな る。この正確さを測るために、不確定性領域の面積Δx1Δy1を もってくるのは自然な考えだ。この数を測定値(x1,y1)の「不 確定度」と呼ぶことにしよう。 最初の衝突を測ったら、あとはもう測定しない。その後の軌道は計算だけで求めていく。こ の計算はかぎりなく正確におこなわれると仮定しよう。前に見たように、これは実際には不可 能だ。コンピュータは無限桁の小数はあつかえないので、どこかで切って端数を処理しなけれ ばならない。けれどもここでは思考実験をおこない、たとえば神さまがご自分のコンピュータ をわたしたちのために貸してくれたと想像しよう。そのコンピュータを使えば、毎回かぎりな く正確な値が計算できるとする。その場合、誤差の原因は最初の測定にしかありえない。この 初期誤差をわたしたちはそれ以降のすべての計算に引きずっていかなければならないのであ る。」(中略)「(x2,y2)を含む不確定性領域の形は長方形で はなくなったが、その面積をやはりΔx2Δy2と書き、これを (x2,y2)の不確定度を呼ぶことにしよう(ただし x2やy2はそれ自体では何もあらわしていないことに注意してお く)。するとリウヴィルの発見は、Δx1Δy1= Δx2Δy2という簡単な等式であらわされる。この数式は、不確定 度が最初の衝突から二回目の衝突に《そのまま》持ち越されることを意味している。初期情報 より精度が高まることもなければ、精度が落ちることもない(わたしたちが神さまのコン ピュータを使っていることをお忘れなく。このため、小数点のあと無限に続く数をどこかで切 る必要はない)。この不確定度は三回目、四回目、さらにそれ以降の衝突にもそのまま持ち越 され、どのnに対しても関係式Δx1Δy1= ΔxnΔynが成り立つ。不確定度は球が運動している間ずっと変わ らない。変わるとすれば、それは当然よりよい機器を用いて新たに測定をおこない、 ΔxnΔynの値を減らしたときだけである。このことを、やや大ま かないい方になるが、つぎのように表現しよう。 古典力学の第一不確定性原理――情報は創出されない。不確定度を減らすことができるのは測 定だけであり、計算では減らせない。」 (イーヴァル・エクランド(1944-)『可能な中で最善な世界』(日本語名『数学は最善世界 の夢を見るか?』)第5章 ポアンカレとその向こう、pp.171-173、みすず書房(2009)、南 條郁子(訳))

数学は最善世界の夢を見るか? 最小作用の原理から最適化理論へ [ イーヴァル・エクランド ]






予測可能性と安定性は積分可能系だけが持っている性質である。古典力学において、一般に非可積分系では、どの出来事も他のすべての出来事の原因である。(イーヴァル・エクランド(1944-))

予測可能性

予測可能性と安定性は積分可能系だけが持っている性質である。古典力学において、一般に非可積分系では、どの出来事も他のすべての出来事の原因である。(イーヴァル・エクランド(1944-))

  「今述べた予測可能性と安定性は、のちに見るように、どちらも積分可能系だけがもってい る性質である。しかし古典力学があまりにも長い間可積分系ばかりあつかってきたせいで、わ たしたちの頭には因果関係についての誤った考えがこびりついてしまった。一般に、非可積分 系が教えてくれる数学的真実とは、どの出来事も他のすべての出来事の原因であるということ だ。すなわち、明日何が起こるかを予測するには、今日起こっていることを《すべて》勘定に 入れなければならない。「因果列」――各々の出来事が次の出来事の(唯一)の原因になってい るようなひと繋がりの出来事の鎖――は、きわめて特殊な場合にしか存在しない。可積分系はま さにそのような特殊な場合に当たり、明確な因果列が存在する。ところがこの可積分系ばかり を長いこと相手にしてきたために、わたしたちはこの世界を、互いにほとんど干渉しあわない ばらばらの因果列が束ねられているだけのものとして見るようになってしまった。たとえばわ たしが通りを歩いているとする。自分のことで頭がいっぱいで、屋根の上を風が吹いているこ となど気にもかけていない。どうしてそんなことを気にする必要があろう。風は別の因果列に 属しており、わたしの因果列とは関係なく、別のルールに従って変化していく。それに風のほ かにも同時進行しているものはたくさんある。それらをいちいち追いかける必要などありはし ない。その上わたしは世界が予測可能で安定していると思っている。わたしはきっと待ち合わ せの場所に着くだろう。今、五分遅れているから、到着も五分くらい送れるだろう。  だがこの見込みは不測の出来事によって打ち砕かれるかもしれないのだ。風で屋根瓦が一枚 吹き飛ばされ、わたしの頭に当たれば、未来の約束は帳消しになる。互いに無関係 (independent,数学では「互いに独立」と表現される)に見えた二つの因果列はじつは無関 係ではなかった。この悲しい出来事がその結末だ。もしかしたら原因は一つではなく、二つ あったといわれるかもしれない(わたしが待ち合わせの場所に急いでいたことと、突然の強 風)。十九世紀哲学の主流を占めていた古典的な分析によれば、これは予測可能性と安定性に 満ちた世界の中で唯一「偶然」に残された場所だった。二つの無関係な因果列は互いに交叉す ることがある。そして交叉点で起こった出来事はどちらか一方の因果列だけからでは予測でき ない。そこで偶然のせいにされるというわけだ。」 (イーヴァル・エクランド(1944-)『可能な中で最善な世界』(日本語名『数学は最善世界 の夢を見るか?』)第4章 計算から幾何へ、pp.135-136、みすず書房(2009)、南條郁子 (訳))




数学は最善世界の夢を見るか? 最小作用の原理から最適化理論へ [ イーヴァル・エクランド ]




人気の記事(週間)

人気の記事(月間)

人気の記事(年間)

人気の記事(全期間)

ランキング

ランキング


哲学・思想ランキング



FC2