ラベル ポアンカレ『科学と仮説』 の投稿を表示しています。 すべての投稿を表示
ラベル ポアンカレ『科学と仮説』 の投稿を表示しています。 すべての投稿を表示

2018年1月14日日曜日

幾何学の公理は、規約であり、扮装を着けた定義に過ぎない。我々は、それらの公理が矛盾を導かない限り、それを自由に選択することができる。ユークリッド幾何学以外の数ある幾何学が可能であるが、そのいずれが実験的真理であるかということは、数学ではなく物理学の問題である。(アンリ・ポアンカレ(1854-1912))

幾何学の公理

【幾何学の公理は、規約であり、扮装を着けた定義に過ぎない。我々は、それらの公理が矛盾を導かない限り、それを自由に選択することができる。ユークリッド幾何学以外の数ある幾何学が可能であるが、そのいずれが実験的真理であるかということは、数学ではなく物理学の問題である。(アンリ・ポアンカレ(1854-1912))】
 幾何学の公理は、規約であり、扮装を着けた定義に過ぎない。我々は、それらの公理が矛盾を導かない限り、それを自由に選択することができる。仮に、これらの公理が、カント Kant のいったように先天的総合判断であるのなら、公理は非常に強い力で我々を束縛するはずだから、我々はこれに反する命題を考えることも、またそういう命題に基づいて理論的な建築を作りあげることもできないに違いない。ロバチェフスキーの幾何学など、ユークリッド幾何学以外の数ある幾何学が可能であるが、そのいずれが実験的真理であるかということは、数学ではなく物理学の問題である。ロバチェフスキーによれば、内角の和と二直角との差は三角形の面積に比例する。したがって、もし我々がもっと大きい三角形を取り扱うか、または我々の測定がもっと精密になったとしたらば、その差を実験的に検証できるかもしれない。もしそうなれば、逆にユークリッド幾何学は暫定的な幾何学に過ぎないということになる。
 「数学者の大多数はロバチェフスキーの幾何学を単なる論理上の遊戯としか見なさない。しかしながら数学者のうちにはもっとはるかに進んでいる人々もある。数ある幾何学が可能である以上、真の幾何学は我々の幾何学であるというのは確かだろうか。経験はもちろん三角形の内角の和は二直角に等しいと我々に教えてはいる。しかしそれはなぜかといえば我々が余り小さい三角形しか取り扱わないからである。ロバチェフスキーによれば、内角の和と二直角との差は三角形の面積に比例する。もし我々がもっと大きい三角形を取り扱うか、または我々の測定がもっと精密になったとしたらば、その差を感じ得るようにならないだろうか。そうなればユークリッド幾何学は暫定的な幾何学に過ぎないであろう。
 この説を論議するには、我々はまず幾何学の公理の本性がどんなものかを考えなければならない。
 これらの公理はカント Kant のいったように先天的総合判断であろうか。
 そうだとすると、これらの公理は非常に強い力で我々を束縛するから、我々はこれに反する命題を考えることも、またそういう命題に基づいて理論的な建築を作りあげることもできない。非ユークリッド幾何学というようなものは存在しないはずである。」(中略)
 「それでは幾何学の公理は実験的な真理であると結論すべきであろうか。しかし人は理想的な直線や円などについて実験することはない。ただ物質的な対象について実験し得るに過ぎない。」(中略)
 「だから幾何学の公理は先天的総合判断でもないし、実験的事実でもない。
 それは規約である。我々の選択はあらゆる可能な規約のうちから実験的事実に導かれて行ったのである。しかし選択にはなお自由の余地があって、矛盾は全然避けるという必要はあるが、それ以外には制限はない。公理の採用を決定した実験的法則が近似的なものに過ぎなくても、なお公理は依然として厳密に真であるということを失わないというのはこういうわけである。
 いいかえれば幾何学の公理(私は算術の公理については述べない)は扮装を着けた定義に過ぎない。」
(アンリ・ポアンカレ(1854-1912)『科学と仮説』第3章、pp.74-76、河野伊三郎(訳))
(索引:)

科学と仮説 (岩波文庫)




アンリ・ポアンカレ(1854-1912)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia

アンリ・ポアンカレ(1854-1912)
ポアンカレの関連書籍(amazon)
検索(ポアンカレ)

にほんブログ村 哲学・思想ブログへ

数学的帰納法(もしくは、これと同等の公理)は、「任意の特定の正の整数について、必要ならいつでも具体的に推論を展開できる」という、理知の能力を肯定することにほかならない。(アンリ・ポアンカレ(1854-1912))

数学的帰納法

【数学的帰納法(もしくは、これと同等の公理)は、「任意の特定の正の整数について、必要ならいつでも具体的に推論を展開できる」という、理知の能力を肯定することにほかならない。(アンリ・ポアンカレ(1854-1912))】
 数学的帰納法について。「それではなぜこの判断が我々にとって争うことのできない自明なものとして服従を強制するのであろうか。それは一つの作用が一度可能だと認められさえすれば、その作用を際限なく繰り返して考えることができると信ずる理知の能力を肯定することにほかならないからである。理知はこの力については直接の直感を有していて、経験は理知にとっては直感を用い、従ってそれを意識する機会となるに過ぎない。」
(アンリ・ポアンカレ(1854-1912)『科学と仮説』第1章、6、p.35、河野伊三郎(訳))
(索引:数学的帰納法、理知の能力)

科学と仮説 (岩波文庫)




アンリ・ポアンカレ(1854-1912)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia

アンリ・ポアンカレ(1854-1912)
ポアンカレの関連書籍(amazon)
検索(ポアンカレ)

にほんブログ村 哲学・思想ブログへ



数学において「無限」の推論を支える公理は、経験により検証可能なものではない。そうかと言って、恣意的な規約とも思えず、自明なものとして服従を強制されているかのようである。(アンリ・ポアンカレ(1854-1912))

無限とは何か?

【数学において「無限」の推論を支える公理は、経験により検証可能なものではない。そうかと言って、恣意的な規約とも思えず、自明なものとして服従を強制されているかのようである。(アンリ・ポアンカレ(1854-1912))】
 数学の定理に「無限」がかかわってくるときに、数学的帰納法(もしくは、これと同等の、正の整数のどんな集合のうちにも、集合中のほかのどれよりも小さい一数がいつでも存在という公理。)が必要になる。この数学的帰納法による証明は、我々が実際に無限の推論を展開できるわけではないという意味で、経験から真であることが知られるわけではない。またそれが、無限にかかわる限り、争うことのできない自明なものとして服従を強制されているように思われることから、任意に採否が決められる「規約」とも思えない。
 「もしある定理が1なる数について真であって、この定理が n なる数につき真であるかぎり、 n + 1 なる数についても真であることを証明したならば、この定理は正の整数すべてについて真であるとする「出直し法」による推理の根拠となる判断は別の形に直すことができる。たとえば相異なる正の整数の無限集合のうちには、集合中のほかのどれよりも小さい一数がいつでも存在するといえる。一つの命題から別の命題に容易に移れるところをみると、出直し法による推理の正当なことを証明したという幻想を抱く人もあるかもしれない。しかしいつでも途中で障害にあう、いつでも証明し得ない公理に到達する。そうしてこれは根本においては、証明すべき命題を別の言葉に翻訳したものにほかならない。
 だから出直し法による推理の規則は矛盾律に引き直し得ないというその結論からまぬかれることはできない。
 そのうえこの規則は経験から来たのでもない。経験が我々に教え得るのは、ある規則が例えば十までの数についてとか、百までの数についてとか真であるということで、経験は際限のない数の系列に追いつくことはできない。できるのは、ただこの系列のうちの、長くても短くてもとにかく必ず限られた一部分に過ぎない。
 ところでそれだけの話だとすれば、矛盾律だけで十分である。これによると我々はいつでも欲しいだけの三段論法を展開することができる。ところがただ一つの公式に無限のものを含ませる場合、ただ無限に対する場合だけこの原理は効果を失い、またその場合には経験も同様に無効になる。分析的な証明によっても、経験によっても捕えられないこの規則は先天的総合判断の真の典型である。しかもこれを幾何学の要請のあるもののように、一つの規約と認めようとするわけにもいかない。」
(アンリ・ポアンカレ(1854-1912)『科学と仮説』第1章、6、pp.34-35、河野伊三郎(訳))
(索引:公理、先天的総合判断、無限、数学的帰納法、出直し法)


科学と仮説 (岩波文庫)





アンリ・ポアンカレ(1854-1912)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia

アンリ・ポアンカレ(1854-1912)
ポアンカレの関連書籍(amazon)
検索(ポアンカレ)

にほんブログ村 哲学・思想ブログへ


問題:諸公理と推論規則による演繹体系である数学は、なぜ、大規模な同語反復に帰しないのであろうか。この豊かな諸成果は、何からもたらされるのか?(アンリ・ポアンカレ(1854-1912))

数学の豊かさの由来

【問題:諸公理と推論規則による演繹体系である数学は、なぜ、大規模な同語反復に帰しないのであろうか。この豊かな諸成果は、何からもたらされるのか?(アンリ・ポアンカレ(1854-1912))】
 数学の豊かな諸成果は、いったい何からもたらされるのだろうか。数学の諸定理が、推論全部の根源にある諸公理をもとにして、形式論理学の規則によって次から次へと引き出すことができるのならば、どうして数学は大規模な同語反復に帰しないのであろうか。これら諸公理と推論規則の由来が、仮に実験的事実のようなものとして理解することができたり、あるいは、人間の認識が従わざるを得ない「先天的総合判断」のようなものとして理解することができたとしても、この数学の豊かな生産性は、依然として謎なのである。
 「数学についてはその可能性からしてすでに解けない矛盾であるように思われる。もし数学が演繹的なのはただ見かけに過ぎないならば、だれも夢にも疑おうとしないこの完全な厳密性はどこから来るのか。もし反対に数学で述べられている命題全部が形式論理学の規則によって次から次へ引き出すことができるならば、どうして数学は大規模な同語反復に帰しないのであろうか。三段論法は我々に何も本質的に新しいことを教えることはできないし、もしすべてが同一律から出てくるべきものだとすれば、すべてはまたそこに帰着するはずである。それではこんなに多くの書物を満たしている定理の全部の叙述は「AはAである」というのを、まわりくどい方法でいったものに過ぎないということを承認するものがあるだろうか。
 もちろん推論全部の根源にある公理にまでさかのぼることはできる。もし公理を矛盾律に帰着させることができないと判断し、そのうえそれを数学的必然性を持ち得ない実験的事実と認めることを欲しないとしても、なおこれらの公理を[カントのいう]先天的総合判断のうちに入れるというくふうもある。これはその困難を解決するものではなく、ただ名前をつけただけである。そのうえ総合判断の本性が我々にとって少しも神秘的でないとしたところで、矛盾は消滅するわけでなくて、あとじさりさせただけのことになる。三段論法的推論はそこに持ち出された材料に何一つ付け加えることができずにいるし、その材料はいくつかの公理に帰着するのだから、その結論のうちには別のものは何も発見できないはずである。」
(アンリ・ポアンカレ(1854-1912)『科学と仮説』第1章、1、pp.20-21、河野伊三郎(訳))
(索引:公理、論理学、同語反復、推論規則、先天的総合判断)

科学と仮説 (岩波文庫)





アンリ・ポアンカレ(1854-1912)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia

アンリ・ポアンカレ(1854-1912)
ポアンカレの関連書籍(amazon)
検索(ポアンカレ)

にほんブログ村 哲学・思想ブログへ


人気の記事(週間)

人気の記事(月間)

人気の記事(年間)

人気の記事(全期間)

ランキング

ランキング


人気ブログランキング



FeedPing