ラベル 竹内薫 の投稿を表示しています。 すべての投稿を表示
ラベル 竹内薫 の投稿を表示しています。 すべての投稿を表示

2020年3月28日土曜日

(仮説)ループ量子重力理論は、時空にも収縮の限界があり「点」まで縮むことはないと考える。その結果、ブラックホールは安定でなくなり反発することになる。その現象が高速電波バーストかもしれない。(カルロ・ロヴェッリ(1956-))

高速電波バースト?

【(仮説)ループ量子重力理論は、時空にも収縮の限界があり「点」まで縮むことはないと考える。その結果、ブラックホールは安定でなくなり反発することになる。その現象が高速電波バーストかもしれない。(カルロ・ロヴェッリ(1956-))】
【高速電波バースト】  「ループ量子重力理論の、ブラックホールへの適用の第二の例は、より劇的な内容を含んでいる。ブラックホールのそばで崩壊した天体は、ブラックホールの内部に吸いこまれるため、外側からはその破片さえ見えなくなる。だが、ブラックホールの内部ではいったい何が起きているのか? もし、わたしたちがブラックホールのなかに落ちていったら、わたしたちには何が見えるのか?
 はじめのうちは、特別なことは何も起こらない。大した傷を負うこともなく、わたしたちはブラックホールの表面を通過する。ところがその後、ぐんぐん速度を増しながら、わたしたちはブラックホールの中心へ転落していく。それから先はどうなるのか? 一般相対性理論の予見によれば、ブラックホールの中心ではすべてのものが限りなく圧縮され、限りなく小さな一点に押しつぶされる。だが繰り返すなら、これは量子重力理論を無視した場合の話しである。
 量子重力理論を考慮するなら、この予見は正しくない。一般相対性理論の予見は、量子の反発を無視している。量子の反発とは、前章で解説した、ビッグバンのときに宇宙を跳ね返した力である。量子重力理論を援用した場合、ブラックホールの中心に近づくにつれ、落下する事物は量子の反発力を受けて速度を落としていく。その際、落下する事物の密度は極限まで高まるものの、その数値はあくまで有限である。ブラックホールの重力に押しつぶされた事物が、無限に小さな一点と化すことはない。なぜなら、事物の寸法には下限が存在するからである。量子重力理論によれば、ブラックホールの中心では、事物を反発させる巨大な圧力が発生する。それは、崩壊する宇宙が反発して、膨張する宇宙へ移行するのとまったく同じ状況である。
 ブラックホールの内側から観測するなら、崩壊する天体の「反発」はすさまじい速度で展開するだろう。しかし忘れてはならないのは、ブラックホールに近づけば近づくほど、外側の世界と比較して時間の流れが遅くなるという点である。外側から眺めれば、反発の過程が数十億年にわたり続く可能性もある。それだけの時間が経過してはじめて、わたしたちはブラックホールが爆発する現場を目撃できるだろう。要するに、ブラックホールとは、遠い未来への近道である。
 一般相対性理論によれば、ブラックホールは永続的な安定性を備えているはずだった。しかし量子重力理論は、ブラックホールが究極的には不安定な存在であることを示唆している。
 ブラックホールの爆発が観測されれば、理論の正しさが劇的に裏づけられるだろう。初期の宇宙で形成されたきわめて古いブラックホールなら、すでに爆発していてもおかしくない。ごく最近の計算によると、ブラックホールが爆発した場合、電波望遠鏡の観測範囲に、爆発の事実を示す信号が送られてくるようである。かねてよりささやかれているのは、電波天文学者によって観測された「高速電波バースト」と呼ばれる奇妙な電波こそ、原初のブラックホールが爆発した再に発せられた信号なのではないかという説である。この仮説が証明されれば、それは間違いなくたいへんなニュースになる。なぜならわたしたちは、量子重力理論を裏づける事象から発せられた、直接的な信号を獲得したことになるのだから。今はただ、観測を待ち続けるしかない……」
(カルロ・ロヴェッリ(1956)『現実は私たちに現われているようなものではない』(日本語名『すごい物理学講義』)第4部 空間と時間を超えて、第9章 実験による裏づけとは?、pp.224-226、河出書房新社(2017)、竹内薫(監訳)、栗原俊秀(訳))
(索引:高速電波バースト)

すごい物理学講義 (河出文庫)



カルロ・ロヴェッリ(1956-)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia
カルロ・ロヴェッリ(1956-)
カルロ・ロヴェッリの関連書籍(amazon)
検索(carlo rovelli)
検索(カルロ・ロヴェッリ)
検索(ループ量子重力理論)

量子論は、ある事物と他の事物との間の、相互作用の結果情報をもとに、起こり得る有限個数の別の相互作用への推移を予測し、相互作用の結果から新たな情報を得る、と定式化することができる。(カルロ・ロヴェッリ(1956-))

量子論と情報

【量子論は、ある事物と他の事物との間の、相互作用の結果情報をもとに、起こり得る有限個数の別の相互作用への推移を予測し、相互作用の結果から新たな情報を得る、と定式化することができる。(カルロ・ロヴェッリ(1956-))】

古典的な記述の例
(1)
 ある物理的な系A(対象系)
  Aは、b1 に存在する。
(2)
 ある物理的な系A(対象系)
  Aは、b2 に存在する。
(3)
 ある物理的な系A(対象系)
  Aは、b3 に存在する。

量子的な記述の例
 量子論は、実在する「事物」の状態の変化を記述しているのではなく、ある事物と他の事物の間のある相互作用から、起こり得る別の相互作用への推移の「過程」を記述する。相互作用の瞬間においてのみ「事物」の性質はあらわになる。(カルロ・ロヴェッリ(1956-))
(1)
 (a)ある物理的な系A(対象系)
  (a.1)Aの状態 a1とは、情報(b.1)を表現している。
  (a.2)状態 a1は、未来におけるAとBの相互作用を予測する。
  (a.3)量子力学の粒性
   AとBの相互作用の結果、
   実現する可能性のあるBの結果 biの総数は、有限である。
   参考:ある現象のなかで実現する可能性のある、互いに区別可能な状態の総数は、有限個である。従って、その現象について私たちが所持していない情報の量も、有限である。(カルロ・ロヴェッリ(1956-))
  (a.4)不確定性
   Bからは、常に新しい情報 biを得ることが可能である。
   参考:量子的な事象とは、観測の対象となっている事象の総体(物理系)が、別の物理系との間に起こす、個別の相互作用のことである。相互作用の結果は確率的に厳密に予測できるが、どの結果が得られるかは不確定である。(カルロ・ロヴェッリ(1956-))

 (b)他の物理的な系B(観測系)
  (b.1)時刻 t1において、
   AとBの相互作用の結果が、b1である。
  (b.2)これは、AとBが過去経験してきたあらゆる相互作用の最終結果である。
  (b.3)これは、未来におけるAとBの相互作用を予測可能にするための整理作業でもある。
(2)
 (a)ある物理的な系A(対象系)
  (a.1)Aの状態 a2とは、情報(b.1)を表現している。
 (b)他の物理的な系B(観測系)
  (b.1)時刻 t2において、
   AとBの相互作用の結果が、b2である。
(3)
 (a)ある物理的な系A(対象系)
  (a.1)Aの状態 a3とは、情報(b.1)を表現している。
 (b)他の物理的な系B(観測系)
  (b.1)時刻 t3において、
   AとBの相互作用の結果が、b3である。


 「わたしたちは量子力学の全体像を、情報という観点から次のように読み解くことができる。ある物理的な系があらわになるのは、ほかの物理的な系と相互作用を起こしたときだけである。したがって、ある物理的な系を記述するには、相互作用の片割れである別の物理的な系との比較が必須になる。ある物理的な系の状態の描写とはつねに、その系が、別の物理的な系についてもっている「情報」の描写である。言い換えるなら、系の状態の描写とは、ある系と別の系のあいだに認められる相関性の描写である。このように、「ある物理的な系が持っている別の系の情報」として量子力学を解釈するなら、量子力学をおおっている神秘の霧はだいぶ薄まってくる。
 つまるところ、物理的な系の描写とは、「その系が過去に経験してきたあらゆる相互作用の要約」にほかならない。それはまた、「未来における相互作用がどんな効果をもちうるか」を予測できるようにするために、過去の相互作用を整理する作業でもある。
 このような考えにもとづくなら、次に掲げる二つの単純な公理さえあれば、量子力学を形づくる全体の枠組みを引き出せてしまう。
 公理1 あらゆる物理的な系において、有意な情報の量は有限である。
 公理2 ある物理的な系からは、つねに新しい情報を得ることが可能である。
 公理1にある「有意な情報」とは、どんな情報を指しているのか? それは、過去にわたしたちがある系と相互作用を起こした結果として、わたしたちがその系について所有することになった情報である。その情報は、未来にわたしたちが同じ系と相互作用を起こしたとき、わたしたちがいかなる影響を被るか予見することを可能にする。公理1は、量子力学の「粒性」を特徴づけている。これは、実現する可能性がある選択肢の総数は有限であるという公理である。公理2は、量子力学の「不確実性」を特徴づけている。量子の世界では、つねに予見不可能な事態が発生するため、わたしたちはそこから新たな情報を引き出すことができる。公理1が示すように、有意な情報の総量には限りがある。したがって、ある系に関する新しい情報を得たのであれば、その帰結として、それに先だつ情報の一部は「有意でない(つまりは無意味な)」情報に変化するはずである。無意味になった情報はもはや、未来の予見に何の影響も与えない。つまり、量子力学の世界においては、ある系と相互作用を与え合うとき、わたしたちは何かを得るばかりでなく、同時に、その系に関する情報の一部を「消去」してもいる。
 量子力学の数学的な全体構造の大枠は、この二つの公理から導き出せる。情報は、量子力学を表現するのに驚くほど適した概念である。」
(カルロ・ロヴェッリ(1956)『現実は私たちに現われているようなものではない』(日本語名『すごい物理学講義』)第4部 空間と時間を超えて、第12章 情報――熱、時間、関係の網、pp.243-245、河出書房新社(2017)、竹内薫(監訳)、栗原俊秀(訳))
(索引:量子論と情報)

すごい物理学講義 (河出文庫)



カルロ・ロヴェッリ(1956-)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia
カルロ・ロヴェッリ(1956-)
カルロ・ロヴェッリの関連書籍(amazon)
検索(carlo rovelli)
検索(カルロ・ロヴェッリ)
検索(ループ量子重力理論)

2020年3月27日金曜日

量子論は、実在する「事物」の状態の変化を記述しているのではなく、ある事物と他の事物の間のある相互作用から、起こり得る別の相互作用への推移の「過程」を記述する。相互作用の瞬間においてのみ「事物」の性質はあらわになる。(カルロ・ロヴェッリ(1956-))

現実とは関係である

【量子論は、実在する「事物」の状態の変化を記述しているのではなく、ある事物と他の事物の間のある相互作用から、起こり得る別の相互作用への推移の「過程」を記述する。相互作用の瞬間においてのみ「事物」の性質はあらわになる。(カルロ・ロヴェッリ(1956-))】

【現実とは関係である】
「世界の本質について量子力学が伝えている三つの側面のうち、第三の側面はもっとも深遠で、もっとも難解な内容を含んでいる。古代の原子論も、この発見にはまったく手をつけていない。
 量子論は、事物が「どのようであるか」ではなく、事物が「どのように起こり、どのように影響を与え合うか」を描写する。一例を挙げるなら、粒子が「どこにあるか」ではなく、粒子が「(次に)どこに現われるか」を描写するわけである。実在する事物から成り立つ世界は、起こりうる相互作用から成り立つ世界に変換される。現実は相互作用に姿を変え、そして、現実は関係に姿を変える。」(中略)
「相関性。自然界のあらゆる事象は相互作用である。ある系における全事象は、別の系との関係のもとに発生する。
 量子力学は、あれやこれやの状態にある「事物」ではなく、「過程」をとおして世界について考えるよう私たちに教えている。過程とは、ある相互作用から別の相互作用への推移を指す。相互作用の瞬間においてのみ、つまり過程の末端においてのみ、「事物」の性質はあらわになる。そして、事物が性質を帯びるのは、ほかの事物との「関係」を考慮したときだけである。しかも、その性質は一意的には予見できない。私たちはあくまで、確率にもとづく予測を立てるしかない。」
(カルロ・ロヴェッリ(1956)『現実は私たちに現われているようなものではない』(日本語名『すごい物理学講義』)第2部 革命の始まり、第4章 量子――複雑奇怪な現実の幕開け、pp.134-136、河出書房新社(2017)、竹内薫(監訳)、栗原俊秀(訳))
(索引:現実とは関係である)

すごい物理学講義 (河出文庫)



カルロ・ロヴェッリ(1956-)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia
カルロ・ロヴェッリ(1956-)
カルロ・ロヴェッリの関連書籍(amazon)
検索(carlo rovelli)
検索(カルロ・ロヴェッリ)
検索(ループ量子重力理論)

量子的な事象とは、観測の対象となっている事象の総体(物理系)が、別の物理系との間に起こす、個別の相互作用のことである。相互作用の結果は確率的に厳密に予測できるが、どの結果が得られるかは不確定である。(カルロ・ロヴェッリ(1956-))

不確定性

【量子的な事象とは、観測の対象となっている事象の総体(物理系)が、別の物理系との間に起こす、個別の相互作用のことである。相互作用の結果は確率的に厳密に予測できるが、どの結果が得られるかは不確定である。(カルロ・ロヴェッリ(1956-))】
【不確定性】
「この世界は、粒状の量子が間断なく引き起こす事象によって形つくられている。これらの事象は離散的であり、粒状であり、それぞれたがいに独立している。量子的な事象とは、ある物理的な「系(観測の対象となっている事象の総体)」が、別の物理的な「系」とのあいだに起こす、個別の相互作用のことである。電子や、光子や、そのほかの場の量子は、空間のなかで継続的な道筋を進むのではなく、別のなにかと衝突したときにだけ、特定の場所に突如として出現する。量子たちは、いつ、どこに現われるのか? それを確実に予見する方法はない。量子力学は、世界の核心に、根源的な不確定性を導入した。未来は誰にも予見できない。これが量子力学によってもたらされた第二の重要な教えである。」(中略)「では、Aという出発地点にいる一個の電子が、しばらくあとでBという終着地点に現われる確率は、どのように計算したらよいのだろうか?
 一九五〇年代、第一章で名前を挙げたリチャード・ファインマンが、この計算を行うためのきわめて効果的な方法を発見している。ファインマンの方法は、A点とB点をつなぐ「あらゆる」経路を、つまり、電子が取りうるあらゆる道筋(まっすぐだったり、曲がっていたり、ジグザグだったり……)を考慮に入れる。まずは、それぞれの経路について計算を行い、その経路の数値を導き出す。そして、確率を導き出すために、これらの数値をすべて足し合わせる。ここで重要なのは、この計算の詳しい仕組みを理解することではない。私たちが着目すべきは、AからBへ移動するのに、電子があたかも「取りうるあらゆる経路を」通過したかのように見えるという点である。確率の雲のなかに飛びこんでいった電子は、ふと気がつけばB点に移動していて、ふたたび別の何物かと衝突している。」
(カルロ・ロヴェッリ(1956)『現実は私たちに現われているようなものではない』(日本語名『すごい物理学講義』)第2部 革命の始まり、第4章 量子――複雑奇怪な現実の幕開け、pp.131-133、河出書房新社(2017)、竹内薫(監訳)、栗原俊秀(訳))
(索引:不確定性)

すごい物理学講義 (河出文庫)



カルロ・ロヴェッリ(1956-)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia
カルロ・ロヴェッリ(1956-)
カルロ・ロヴェッリの関連書籍(amazon)
検索(carlo rovelli)
検索(カルロ・ロヴェッリ)
検索(ループ量子重力理論)

ある現象のなかで実現する可能性のある、互いに区別可能な状態の総数は、有限個である。従って、その現象について私たちが所持していない情報の量も、有限である。(カルロ・ロヴェッリ(1956-))

情報は有限である

【ある現象のなかで実現する可能性のある、互いに区別可能な状態の総数は、有限個である。従って、その現象について私たちが所持していない情報の量も、有限である。(カルロ・ロヴェッリ(1956-))】
【情報は有限である】
「ここで、ひとつ想像してみてほしい。あなたは、ある物理現象の計測を行い、その現象がどのような状態にあるかを突きとめようとしている。たとえば、振り子の振り幅を計測して、五センチと六センチのあいだであることが分かったとしよう(物理学ではどんな計測も、完璧に正確であるということはありえない)。量子力学が確立される以前は、五センチと六センチのあいだに、振り幅が取りうる値は無限に存在していた(たとえば、5.1センチであったり、5.101センチであったり、5.101001センチであったり……)。したがって、振り子の動きには「無限」の可能性が存在することになる。振り子に関するわたしたちの無知もまた、文字通り「無限」の状態にあるわけである。
 一方で、量子力学はわたしたちにこう教えている。五センチと六センチのあいだで、振り幅が取りうる値の数は「有限」である。だから、振り子についてわたしたちが所持していない情報の量もまた、「有限」であるといえる。
 この議論はあらゆる文脈に適用できる。つまり、量子力学の第一の重要な意義は、ある現象のうちに存在する「情報」の総量に限界を設けたことにある。ここでいう「情報」とは、「ある現象のなかで生じうる、たがいに区別可能な状態」を指している。自然の奥底に潜む粒性が、「無限」にたいして「限界」を設定する。デモクリトスが洞察したこの粒性こそ、量子論を支える第一の側面である。このような粒性があらわになる極小のスケールは、プランク定数hによって規定されている。」
(カルロ・ロヴェッリ(1956)『現実は私たちに現われているようなものではない』(日本語名『すごい物理学講義』)第2部 革命の始まり、第4章 量子――複雑奇怪な現実の幕開け、pp.130-131、河出書房新社(2017)、竹内薫(監訳)、栗原俊秀(訳))
(索引:情報は有限である)

すごい物理学講義 (河出文庫)



カルロ・ロヴェッリ(1956-)の命題集(Collection of propositions of great philosophers)
(出典:wikipedia
カルロ・ロヴェッリ(1956-)
カルロ・ロヴェッリの関連書籍(amazon)
検索(carlo rovelli)
検索(カルロ・ロヴェッリ)
検索(ループ量子重力理論)

2018年11月18日日曜日

仮説:この宇宙は、今の宇宙のビッグバンの前に「前の宇宙相」の未来の果てが存在し、この宇宙のはるか未来の時空の「向こう側」に「次の宇宙相」のビッグバンが存在するような、無限に連なる構造なのではないか。(ロジャー・ペンローズ(1931-))

共形サイクリック宇宙論

【仮説:この宇宙は、今の宇宙のビッグバンの前に「前の宇宙相」の未来の果てが存在し、この宇宙のはるか未来の時空の「向こう側」に「次の宇宙相」のビッグバンが存在するような、無限に連なる構造なのではないか。(ロジャー・ペンローズ(1931-))】

(4)追加記載。

(1)ビッグバン直後の宇宙の状態
  ビッグバンの直後は極めて高温で、すべての粒子が事実上、光子のように質量がゼロと考えてもいいような時空構造であったと考えられる。この構造では、局所的なスケール変化の影響を受けない。(ロジャー・ペンローズ(1931-))

 ビッグバンの直後、恐らくビッグバンの瞬間から10-12秒後あたりまで遡ると、温度は約1016Kを超えていて、物理学はスケール因子Ωをまったく気にしないものになり、共形幾何学が、その物理過程に適した時空構造になると考えられる。そのため、当時の物理的活動のすべては、局所的なスケール変化の影響を受けなかったと考えられる。

(2)はるか未来の宇宙の状態
  指数関数的な膨張が続く宇宙の未来は、宇宙マイクロ波背景放射とホーキング放射による光子、重力子、そして恐らく大量の「ダークマター」から構成され、局所的なスケール変化の影響を受けない構造となる。(ロジャー・ペンローズ(1931-))

 正の宇宙定数Λをもつ宇宙モデルによれば、われわれの宇宙は最終的には指数関数的な膨張に落ち着くはずだ。それは、なめらかで空間的な未来の共形境界I+をもつだろう。その構成は、
 (a)非常に強く赤方遷移した星の光、宇宙マイクロ波背景放射
 (b)無数の巨大ブラックホールの質量エネルギーのほとんどすべてを、非常に低エネルギーの光子の形で運び去ってしまうホーキング放射
 (参照: ブラックホールは非常に小さな温度を持つ。宇宙の指数関数的な膨張が続くと、やがて宇宙の温度があらゆるブラックホールの温度より低くなる。ブラックホールはエネルギーを放射するようになり、最後は消滅する。(ロジャー・ペンローズ(1931-)))
 (c)重力子(グラビトン)
 (d)おそらく大量の「ダークマター」

(3)ビッグバン直後の宇宙の状態と、はるか未来の宇宙の状態に共通する性質
  宇宙の始めと遥か未来の状態の共通点:(1)質量のない粒子のみ存在する、(2)粒子にとって時間経過が無限に遅くなる、(3)局所的なスケール変化の影響を受けない、(4)始めと無限の未来の「向こう側」への時空の拡張可能性。(ロジャー・ペンローズ(1931-))
 (3.1)宇宙には、質量のない粒子しか存在しなくなる。
 (3.2)時間の経過が意味を持つためには、静止質量をもつ粒子が必要である。質量のない粒子にとっては、時間の経過が無限に遅くなる。すなわち、質量のない粒子は、その内なる時計が最初の時を刻む前に、宇宙においては永遠の時間が経過する。「永遠なんて、たいしたことじゃない」のである!
 (3.3)質量ゼロの粒子は、時空の計量がどのようなものであるかにあまり関心がなく、局所的なスケール変化の影響を受けない構造となる。
 (3.4)理論的には、ビッグバン超曲面をビッグバンの前、「向こう側」までなめらかに拡張することを許容しているように思われる。また、正の宇宙定数Λがあるときには、はるか未来の宇宙の時空を、無限の「向こう側」の未来方向に拡張できることが、数学的に強く支持されている。

(4)宇宙の構造についての、一つの可能性。
 (4.1)はるか未来の宇宙の時空を、無限の「向こう側」の未来方向に拡張した先に、「この」宇宙のビッグバン超曲面が「ぐるりと輪になって」存在しているのではないだろうか。しかし、このような時空には閉じた時間的曲線があるため、因果関係にパラドックスが生じるために、これは除外される。
 (4.2)はるか未来の宇宙の時空を、無限の「向こう側」の未来方向に拡張した先が、「次の宇宙相」の〈ビッグバン〉につながり、この宇宙のビッグバン超曲面をビッグバンの前の「向こう側」までなめらかに拡張したところには、「前の宇宙相」の未来の果てが存在しているのではないだろうか。そして、恐らく宇宙全体は、このようなビッグバンから指数関数的な果てしない膨張までのサイクルが、無限個連続した時空として存在しているのではないだろうか。

 「この点で、一つの可能性が立ち現われてくる。I+とB-が同じ一つのものである可能性はないのだろうか? ひょっとすると、われわれの宇宙は、共形多様体として単純に「ぐるりと輪になって」いるのではないだろうか? I+の先にはまたビッグバンから始まるわれわれの宇宙があって、トッドの提案にしたがい、共形的に引き延ばされてB-となるのではないだろうか? このアイディアの魅力は、その経済性にある。けれども私は個人的に、この提案には一貫性の点で深刻な問題があるため成り立たないと考えている。基本的に、そのような時空には閉じた時間的曲線があるため、因果関係にパラドックスが生じたり、少なくとも、行動に不愉快な制約を課したりするからだ。こうしたパラドックスや制約は、一貫性のある情報がI+/B-超曲面を横切れるかどうかにかかっている。第18章では、私がここで提案するような体系のなかで、このようなことが現実になる可能性があり、また、閉じた時間的曲線が本当に深刻な矛盾を引き起こすおそれがあることを見ていく。このような理由から、私はI+とB-が同じ一つのものであるとは考えない。」
(ロジャー・ペンローズ(1931-),『時間のサイクル』(日本語名『宇宙の始まりと終わりはなぜ同じなのか』),第3部 共形サイクリック宇宙論,第13章 無限とつながる,新潮社(2014),p.173,竹内薫(訳))
(索引:)
 「だから私は次善の策を提案したい。B-の前には「前の宇宙相」の未来の果てにあたる物理的にリアルな時空領域があり、I+の先にも物理的にリアルな時空領域があって、「次の宇宙相」の〈ビッグバン〉が起こると考えるのだ。この提案に合わせて、われわれのB-から始まりI+まで続く宇宙相を「現イーオン〔訳注=aeonとは、はかり知れないほど長い年月のことである〕と呼び、宇宙全体は(おそらく無限に)連続するイーオンからなる、拡張された共形多様体として理解できると考えよう。図3-3を参照されたい。各イーオンの「I+」を次のイーオンの「B-」と同一視することで、前のイーオンと次のイーオンとの連続性が確保され、両者の結合は共形時空構造として完全になめらかなものとなる。
 読者諸氏は、未来の果てと〈ビッグバン〉の爆発を同一視することを不安に思われるかもしれない。未来の果てでは、放射の温度が下がってゼロとなり、膨張により宇宙の密度もゼロになるのに対して、〈ビッグバン〉では、放射の温度も密度も無限大であるからだ。けれども、〈ビッグバン〉での共形的な「引き伸ばし」は、無限大の密度と温度を有限の値まで引き下げ、無限遠の未来での共形的な「押しつぶし」は、ゼロだった密度と温度を有限の値まで引き上げる。これらは両者を一致させるための再スケーリングにすぎず、引き伸ばしも押しつぶしも、両側の物理学に対してなんの影響も及ぼさない。もう一つ言っておくべきことがある。クロスオーバー〔訳注=イーオンとイーオンが重なる部分〕の両側の物理的活動がとりうるすべての状態を記述する位相空間Pは(第3章参照)、共形不変な体積をもつ。その基本的な理由は、距離が減少するときには対応する運動量が増加し、距離が増加するときには対応する運動量が減少して、距離と運動量の積が再スケーリングによって完全に不変になっているからだ。この事実は、第16章で決定的に重要になる。私は、この宇宙論の体系を共形サイクリック宇宙論(conformal cyclic cosmology、CCC)と呼んでいる。」
(ロジャー・ペンローズ(1931-),『時間のサイクル』(日本語名『宇宙の始まりと終わりはなぜ同じなのか』),第3部 共形サイクリック宇宙論,第13章 無限とつながる,新潮社(2014),pp.173-174,竹内薫(訳))
(索引:共形サイクリック宇宙論)

宇宙の始まりと終わりはなぜ同じなのか


(出典:wikipedia
ロジャー・ペンローズ(1931-)の命題集(Collection of propositions of great philosophers)  「さらには、こうしたことがらを人間が理解する可能性があるというそのこと自体が、意識がわれわれにもたらしてくれる能力について何らかのことを語っているのだ。」(中略)「「自然」の働きとの一体性は、潜在的にはわれわれすべての中に存在しており、いかなるレヴェルにおいてであれ、われわれが意識的に理解し感じるという能力を発動するとき、その姿を現すのである。意識を備えたわれわれの脳は、いずれも、精緻な物理的構成要素で織り上げられたものであり、数学に支えられたこの宇宙の深淵な組織をわれわれが利用するのを可能ならしめている――だからこそ、われわれは、プラトン的な「理解」という能力を介して、この宇宙がさまざまなレヴェルでどのように振る舞っているかを直接知ることができるのだ。
 これらは重大な問題であり、われわれはまだその説明からはほど遠いところにいる。これらの世界《すべて》を相互に結びつける性質の役割が明らかにならないかぎり明白な答えは現れてこないだろう、と私は主張する。これらの問題は互いに切り離し、個々に解決することはできないだろう。私は、三つの世界とそれらを互いに関連づけるミステリーを言ってきた。だが、三つの世界ではなく、《一つの》世界であることに疑いはない。その真の性質を現在のわれわれは垣間見ることさえできないのである。」

    プラトン的
    /世界\
   /    \
  3      1
 /        \
心的───2────物理的
世界         世界


(ロジャー・ペンローズ(1931-),『心の影』,第2部 心を理解するのにどんな新しい物理学が必要なのか,8 含意は?,8.7 三つの世界と三つのミステリー,みすず書房(2001),(2),pp.235-236,林一(訳))

ロジャー・ペンローズ(1931-)
ロジャー・ペンローズの関連書籍(amazon)
検索(ロジャー・ペンローズ)

にほんブログ村 哲学・思想ブログへ

数学ランキング
ブログサークル

2018年9月23日日曜日

宇宙の始めと遥か未来の状態の共通点:(1)質量のない粒子のみ存在する、(2)粒子にとって時間経過が無限に遅くなる、(3)局所的なスケール変化の影響を受けない、(4)始めと無限の未来の「向こう側」への時空の拡張可能性。(ロジャー・ペンローズ(1931-))

ビッグバン直後と遥か未来の宇宙の状態

【宇宙の始めと遥か未来の状態の共通点:(1)質量のない粒子のみ存在する、(2)粒子にとって時間経過が無限に遅くなる、(3)局所的なスケール変化の影響を受けない、(4)始めと無限の未来の「向こう側」への時空の拡張可能性。(ロジャー・ペンローズ(1931-))】

(1)ビッグバン直後の宇宙の状態
ビッグバンの直後は極めて高温で、すべての粒子が事実上、光子のように質量がゼロと考えてもいいような時空構造であったと考えられる。この構造では、局所的なスケール変化の影響を受けない。(ロジャー・ペンローズ(1931-))

(2)はるか未来の宇宙の状態
指数関数的な膨張が続く宇宙の未来は、宇宙マイクロ波背景放射とホーキング放射による光子、重力子、そして恐らく大量の「ダークマター」から構成され、局所的なスケール変化の影響を受けない構造となる。(ロジャー・ペンローズ(1931-))
(3)ビッグバン直後の宇宙の状態と、はるか未来の宇宙の状態に共通する性質
 (3.1)宇宙には、質量のない粒子しか存在しなくなる。
 (3.2)時間の経過が意味を持つためには、静止質量をもつ粒子が必要である。質量のない粒子にとっては、時間の経過が無限に遅くなる。すなわち、質量のない粒子は、その内なる時計が最初の時を刻む前に、宇宙においては永遠の時間が経過する。「永遠なんて、たいしたことじゃない」のである!
 (3.3)質量ゼロの粒子は、時空の計量がどのようなものであるかにあまり関心がなく、局所的なスケール変化の影響を受けない構造となる。
 (3.4)理論的には、ビッグバン超曲面をビッグバンの前、「向こう側」までなめらかに拡張することを許容しているように思われる。また、正の宇宙定数Λがあるときには、はるか未来の宇宙の時空を、無限の「向こう側」の未来方向に拡張できることが、数学的に強く支持されている。

 「私はずっと、このような考えに鬱々としていたが、2005年の夏のある日、別の考えが頭に浮んだ。それは「宇宙が永遠の単調さに支配されたとき、そのことを退屈に感じる存在があるのだろうか?」という自問だった。その頃にはもちろん、われわれは存在していない。存在しているのは主として、光子や重力子のような質量のない粒子だろう。こうした粒子が意味のある経験をすることなどありえないが、たとえ光子や重力子がなにかを経験することができたとしても、彼らを退屈させるのは非常に難しい! なぜなら、質量のない粒子にとっては、時間の経過などなんでもないからだ。図2-22に示したように、質量のない粒子は、その内なる時計が最初の時を刻む前に永遠(つまりI+)に到達してしまう。だから、光子や重力子のような質量のない粒子にとっては、「永遠なんて、たいしたことじゃない」のである!
 換言すると、時計をつくるためには静止質量をもつ粒子が必要であるようだ。そのため、遠い未来に、静止質量をもつ粒子がほとんどなくなってしまったとしたら、時間の経過を測定できなくなってしまう(同時に、距離の測定もできなくなる。距離の測定も、時間の測定に依存しているからだ。第9章参照)。さきほども述べたように、質量ゼロの粒子は時空の計量がどのようなものであるかにあまり関心がなく、その共形(またはヌル円錐)構造しか尊重していないようである。それゆえ、質量ゼロの粒子にとって、最終的な超曲面I+は、ほかの領域と特に変わりない共形時空の一領域にすぎず、この共形時空をI+の「向こう側」まで拡張できると仮定したとき、粒子がそこに入っていくことを禁じていないように見える。さらに、ヘルムート・フリードリヒの重要な研究などにより、ここで考察したような一般的な状況において、正の宇宙定数Λがあるときには、時空を未来方向に共形的に拡張できることが数学的に強く支持されている。
 われわれはトッドの提案にもとづいてビッグバン超曲面での物理学について議論したが、その主旨はこれと同じだ。I+もB-も(それぞれ異なる理由により)、共形時空をこれらの超曲面の「向こう側」までなめらかに拡張することを許容しているように思われる。それだけではない。超曲面の両側にある物質は、本質的に質量がない物質であるかもしれない。そうした物質の物理的なふるまいは、基本的に共形不変な方程式に支配されるため、物質の活動は(共形)時空の仮説的な拡張部分のどちらの側にも続いていくことができるだろう。」
(ロジャー・ペンローズ(1931-),『時間のサイクル』(日本語名『宇宙の始まりと終わりはなぜ同じなのか』),第3部 共形サイクリック宇宙論,第13章 無限とつながる,新潮社(2014),pp.172-173,竹内薫(訳))
(索引:ビッグバン直後の宇宙,未来の宇宙)

宇宙の始まりと終わりはなぜ同じなのか


(出典:wikipedia
ロジャー・ペンローズ(1931-)の命題集(Collection of propositions of great philosophers)  「さらには、こうしたことがらを人間が理解する可能性があるというそのこと自体が、意識がわれわれにもたらしてくれる能力について何らかのことを語っているのだ。」(中略)「「自然」の働きとの一体性は、潜在的にはわれわれすべての中に存在しており、いかなるレヴェルにおいてであれ、われわれが意識的に理解し感じるという能力を発動するとき、その姿を現すのである。意識を備えたわれわれの脳は、いずれも、精緻な物理的構成要素で織り上げられたものであり、数学に支えられたこの宇宙の深淵な組織をわれわれが利用するのを可能ならしめている――だからこそ、われわれは、プラトン的な「理解」という能力を介して、この宇宙がさまざまなレヴェルでどのように振る舞っているかを直接知ることができるのだ。
 これらは重大な問題であり、われわれはまだその説明からはほど遠いところにいる。これらの世界《すべて》を相互に結びつける性質の役割が明らかにならないかぎり明白な答えは現れてこないだろう、と私は主張する。これらの問題は互いに切り離し、個々に解決することはできないだろう。私は、三つの世界とそれらを互いに関連づけるミステリーを言ってきた。だが、三つの世界ではなく、《一つの》世界であることに疑いはない。その真の性質を現在のわれわれは垣間見ることさえできないのである。」

    プラトン的
    /世界\
   /    \
  3      1
 /        \
心的───2────物理的
世界         世界


(ロジャー・ペンローズ(1931-),『心の影』,第2部 心を理解するのにどんな新しい物理学が必要なのか,8 含意は?,8.7 三つの世界と三つのミステリー,みすず書房(2001),(2),pp.235-236,林一(訳))

ロジャー・ペンローズ(1931-)
ロジャー・ペンローズの関連書籍(amazon)
検索(ロジャー・ペンローズ)

にほんブログ村 哲学・思想ブログへ

数学ランキング
ブログサークル

2018年9月9日日曜日

指数関数的な膨張が続く宇宙の未来は、宇宙マイクロ波背景放射とホーキング放射による光子、重力子、そして恐らく大量の「ダークマター」から構成され、局所的なスケール変化の影響を受けない構造となる。(ロジャー・ペンローズ(1931-))

宇宙の未来の構造

【指数関数的な膨張が続く宇宙の未来は、宇宙マイクロ波背景放射とホーキング放射による光子、重力子、そして恐らく大量の「ダークマター」から構成され、局所的なスケール変化の影響を受けない構造となる。(ロジャー・ペンローズ(1931-))】

 正の宇宙定数Λをもつ宇宙モデルによれば、われわれの宇宙は最終的には指数関数的な膨張に落ち着くはずだ。それは、なめらかで空間的な未来の共形境界I+をもつだろう。その構成は、
 (a)非常に強く赤方遷移した星の光、宇宙マイクロ波背景放射
 (b)無数の巨大ブラックホールの質量エネルギーのほとんどすべてを、非常に低エネルギーの光子の形で運び去ってしまうホーキング放射
 (参照: ブラックホールは非常に小さな温度を持つ。宇宙の指数関数的な膨張が続くと、やがて宇宙の温度があらゆるブラックホールの温度より低くなる。ブラックホールはエネルギーを放射するようになり、最後は消滅する。(ロジャー・ペンローズ(1931-)))
 (c)重力子(グラビトン)
 (d)おそらく大量の「ダークマター」

 「ここで、まったく違ったことを考えてみよう。時間のもう一方の端、すなわち、はるか遠い未来に起こると予想されていることを検証するのだ。第7章で考察した正の宇宙定数Λをもつ宇宙モデルによれば、われわれの宇宙は最終的には指数関数的な膨張に落ち着くはずだ。そのモデルは図2-35の厳密な共形ダイヤグラムに酷似したものになり、なめらかで空間的な未来の共形境界I+をもつだろう。もちろん、われわれの宇宙には、現在、いくつかの種類のムラがある。高度な対称性をもつFLRWモデルの幾何学から局所的に最も大きく逸脱しているのは、ブラックホール、特に、銀河の中心部にある巨大質量のブラックホールだ。けれども、第11章の議論によれば、すべてのブラックホールは最終的には「ポン」と消滅してしまう(図2-40と、その厳密な共形ダイアグラムである図2-41を参照されたい)。とはいえ、最大級のブラックホールは、ポンと消滅するまでに1グーゴル(10100)年以上の時間を要するだろう。
 この気の遠くなるような時間における宇宙の物理的構成を考えるとき、粒子数が圧倒的に多いのは光子だろう。これらの光子は、非常に強く赤方遷移した星の光、宇宙マイクロ波背景放射、およびホーキング放射に由来している。ホーキング放射は、最終的には、無数の巨大ブラックホールの質量エネルギーのほとんどすべてを、非常に低エネルギーの光子の形で運び去ってしまう。光子のほかには重力子(グラビトン)もあるはずだ。重力子は重力波を構成する量子で、ブラックホールどうし、特に、銀河中心の巨大ブラックホールどうしの接近によって生成する。ブラックホールどうしの接近がわれわれにとって非常に重要な役割を果たすことについては、第18章で詳しく述べる。光子は質量をもたないが、重力子も質量をもたないため、第9章の図2-21で説明したとおり、どちらも時計の政策に利用することはできない。
 光子と重力子のほかに、おそらく大量の「ダークマター」も存在しているだろう。この謎めいた物質の正体がなんであろうと(ダークマターについて私自身が基本的にどのような提案をしているかについては第7章と第14章を参照されたい)、ブラックホールに捕まらずにすんだものが残存しているはずである。重力場を通してしか相互作用しないダークマターが、時計づくりにどのように役に立つのか、考えることは困難だ。けれども、そのような視点をもつことは、哲学的立場を微妙に変えることにつながる。第14章で見ていくように、このような微妙な変化は、少なくとも私がこれから提案する全体像にとっては、なくてはならないものである。結局のところ、われわれの宇宙が膨張の最終段階に入るときに物理的に意味があるのは、時空の共形構造だけかもしれない。」
(ロジャー・ペンローズ(1931-),『時間のサイクル』(日本語名『宇宙の始まりと終わりはなぜ同じなのか』),第3部 共形サイクリック宇宙論,第13章 無限とつながる,新潮社(2014),pp.170-171,竹内薫(訳))
(索引:宇宙の未来の構造)

宇宙の始まりと終わりはなぜ同じなのか


(出典:wikipedia
ロジャー・ペンローズ(1931-)の命題集(Collection of propositions of great philosophers)  「さらには、こうしたことがらを人間が理解する可能性があるというそのこと自体が、意識がわれわれにもたらしてくれる能力について何らかのことを語っているのだ。」(中略)「「自然」の働きとの一体性は、潜在的にはわれわれすべての中に存在しており、いかなるレヴェルにおいてであれ、われわれが意識的に理解し感じるという能力を発動するとき、その姿を現すのである。意識を備えたわれわれの脳は、いずれも、精緻な物理的構成要素で織り上げられたものであり、数学に支えられたこの宇宙の深淵な組織をわれわれが利用するのを可能ならしめている――だからこそ、われわれは、プラトン的な「理解」という能力を介して、この宇宙がさまざまなレヴェルでどのように振る舞っているかを直接知ることができるのだ。
 これらは重大な問題であり、われわれはまだその説明からはほど遠いところにいる。これらの世界《すべて》を相互に結びつける性質の役割が明らかにならないかぎり明白な答えは現れてこないだろう、と私は主張する。これらの問題は互いに切り離し、個々に解決することはできないだろう。私は、三つの世界とそれらを互いに関連づけるミステリーを言ってきた。だが、三つの世界ではなく、《一つの》世界であることに疑いはない。その真の性質を現在のわれわれは垣間見ることさえできないのである。」

    プラトン的
    /世界\
   /    \
  3      1
 /        \
心的───2────物理的
世界         世界


(ロジャー・ペンローズ(1931-),『心の影』,第2部 心を理解するのにどんな新しい物理学が必要なのか,8 含意は?,8.7 三つの世界と三つのミステリー,みすず書房(2001),(2),pp.235-236,林一(訳))

ロジャー・ペンローズ(1931-)
ロジャー・ペンローズの関連書籍(amazon)
検索(ロジャー・ペンローズ)

にほんブログ村 哲学・思想ブログへ

数学ランキング
ブログサークル

2018年9月5日水曜日

ビッグバンの直後は極めて高温で、すべての粒子が事実上、光子のように質量がゼロと考えてもいいような時空構造であったと考えられる。この構造では、局所的なスケール変化の影響を受けない。(ロジャー・ペンローズ(1931-))

ビッグバン直後の状態

【ビッグバンの直後は極めて高温で、すべての粒子が事実上、光子のように質量がゼロと考えてもいいような時空構造であったと考えられる。この構造では、局所的なスケール変化の影響を受けない。(ロジャー・ペンローズ(1931-))】

 ビッグバンの直後、恐らくビッグバンの瞬間から10-12秒後あたりまで遡ると、温度は約1016Kを超えていて、物理学はスケール因子Ωをまったく気にしないものになり、共形幾何学が、その物理過程に適した時空構造になると考えられる。そのため、当時の物理的活動のすべては、局所的なスケール変化の影響を受けなかったと考えられる。

 「はるかな昔、ビッグバン直後の物質宇宙は、物理的にどのようなものだったのだろうか? 確実にわかっているのは、高温だったということだ。ただの高温ではなく、おそろしく高温だった、と言うべきだろう。当時、宇宙を飛び回っていた粒子の運動エネルギーはあまりにも大きく、比較的小さな静止エネルギー(静止質量mの粒子ではE=mc2)を完全に圧倒していた。そのため、粒子の静止質量はほとんど問題にならず、これに関連した力学過程においては事実上ゼロと言ってよいほどだった。ごく初期の宇宙は、事実上質量のない粒子からできていたと言ってよい。
 このことを別の言葉で表現するために、心にとめておくべきことがある。それは、基本粒子の質量の起源に関する現在の素粒子物理学理論によると、素粒子の静止質量は、ヒッグス・ボソンと呼ばれる特別な粒子(ひょっとすると、特別な粒子のファミリー)の作用を通じて生じてきたと考えられるということだ。ヒッグス粒子と関連した量子場があり、量子力学的な「対称性の破れ」という不思議な過程を通じて、ほかの素粒子に質量を与えたというのが、自然界の任意の基本粒子の静止質量の起源に関する標準理論になっている。つまり、これらの素粒子はヒッグス粒子がなかったら質量をもたなかったと考えられるのに対して、ヒッグス粒子は独自の質量(静止質量)をもっていることになる。けれども、ごく初期の宇宙では、温度があまりにも高く、ヒッグス粒子の静止質量を大幅に上回る運動エネルギーを付与するため、標準理論によれば、すべての粒子が、事実上、光子のように質量がゼロであったということになる。
 第9章の議論を思い出してほしい。質量のない粒子は、時空の計量の「全体像」にはあまり関心がなく、その共形(またはヌル円錐)構造しか尊重していないように見える。もう少し明確に(そして慎重に)説明するため、原初の質量ゼロの粒子であり、今日も質量がないままである光子について考えよう。光子を正しく理解するためには、量子力学(より正確には「場の量子論」)という、奇妙だが厳密な理論のなかで考える必要があるが、ここで場の量子論を詳細に説明しているわけにはいかない(ただし、第16章では量子論の基本的な問題をいくつかとりあげることになる)。われわれが主に興味をもっているのは、光子が量子的な構成要素となるような物理場である。この場がマックスウェルの電磁場で、第12章で説明したようにテンソルFにより記述される。マックスウェル方程式は、完全に共形不変であることがわかっている。これは次のような意味である。計量gを共形的に関連した計量g^に置き換えて、
 gg^
とする。(非一様に)再スケーリングされる新しい計量g^は、
 g^2g
と書ける。ここでΩは、正の値をとり、時空のなかをなめらかに変化するスカラー量である。(第9章参照)。このとき、すべての操作をgではなくg^によって定義すれば、マックスウェル場のテンソルFについても、その源である電荷・電流ベクトルJについても、適当なスケール因子を見つけて、以前とまったく同じマックスウェル方程式が成り立つようにすることができるのだ。それゆえ、特定の共形スケールを選択した場合のマックスウェル方程式の任意の解は、ほかの共形スケールを選択した場合に完全に対応する解に変換することができる(この点については第14章でもう少し詳しく説明し、補遺A6でもっとしっかり説明する)。さらに根本的なレベルでは、粒子(光子)の記述との一致が「^」のついた計量g^にもあてはまり、個々の光子が個々の光子に対応するという点で、これは場の量子論と矛盾しない。ゆえに、光子そのものは、局所的なスケールが変更されたことに「気づきもしない」のだ。
 マックスウェルの理論は、この強い意味で共形不変であり、電荷を電磁場に結びつける電磁相互作用も、スケールの局所的な変更に気がつかない。光子も、光子と荷電粒子の相互作用も、その方程式が組み立てられるためには、時空がヌル円錐構造(つまり共形時空構造)をもつことを必要とするが、実際の計量を相互に区別し、このヌル円錐構造と矛盾しないようなスケール因子は必要としない。さらに、まったく同じ不変性がヤン=ミルズ方程式にも成り立つ。ヤン=ミルズ方程式は、強い相互作用だけでなく弱い相互作用も支配する。強い相互作用とは、核子(陽子と中性子)や、核子を構成するクォークや、これらに関連したその他の粒子との間ではたらく力のことで、弱い相互作用とは、放射性崩壊を引き起こす力のことである。ヤン=ミルズ理論は、数学的にはマックスウェルの理論に「余分な内部添字」をつけて(補遺A7参照)、一個の光子を粒子の多重項に置き換えたものにすぎない。強い相互作用では、クォークとグル―オンと呼ばれるものが、それぞれ電磁気理論における電子と光子に相当している。グル―オンには質量がないが、クォークには質量があり、その質量はヒッグス粒子と直接関係していると考えられている。弱い相互作用の標準理論(現在は電磁気理論もこの理論に組み込まれているため「電弱理論」と呼ばれている)では、光子はほかの三つの粒子(W+、W-、Z)を含む多重項の一部と考えられている。W+、W-、Zは質量をもっていて、、これらの質量もヒッグス粒子と結びついていると考えられる。」(中略)「まとめると、ビッグバンの直後、おそらくビッグバンの瞬間から10-12秒後あたりまでさかのぼると、温度は約1016Kを超えていて、物理学はスケール因子Ωをまったく気にしないものになり、共形幾何学が、その物理過程に適した時空構造になると考えられる。そのため、当時の物理的活動のすべては、局所的なスケール変化の影響を受けなかったと考えられる。」
(ロジャー・ペンローズ(1931-),『時間のサイクル』(日本語名『宇宙の始まりと終わりはなぜ同じなのか』),第3部 共形サイクリック宇宙論,第13章 無限とつながる,新潮社(2014),pp.164-167,竹内薫(訳))
(索引:ビッグバン直後の状態)

宇宙の始まりと終わりはなぜ同じなのか


(出典:wikipedia
ロジャー・ペンローズ(1931-)の命題集(Collection of propositions of great philosophers)  「さらには、こうしたことがらを人間が理解する可能性があるというそのこと自体が、意識がわれわれにもたらしてくれる能力について何らかのことを語っているのだ。」(中略)「「自然」の働きとの一体性は、潜在的にはわれわれすべての中に存在しており、いかなるレヴェルにおいてであれ、われわれが意識的に理解し感じるという能力を発動するとき、その姿を現すのである。意識を備えたわれわれの脳は、いずれも、精緻な物理的構成要素で織り上げられたものであり、数学に支えられたこの宇宙の深淵な組織をわれわれが利用するのを可能ならしめている――だからこそ、われわれは、プラトン的な「理解」という能力を介して、この宇宙がさまざまなレヴェルでどのように振る舞っているかを直接知ることができるのだ。
 これらは重大な問題であり、われわれはまだその説明からはほど遠いところにいる。これらの世界《すべて》を相互に結びつける性質の役割が明らかにならないかぎり明白な答えは現れてこないだろう、と私は主張する。これらの問題は互いに切り離し、個々に解決することはできないだろう。私は、三つの世界とそれらを互いに関連づけるミステリーを言ってきた。だが、三つの世界ではなく、《一つの》世界であることに疑いはない。その真の性質を現在のわれわれは垣間見ることさえできないのである。」

    プラトン的
    /世界\
   /    \
  3      1
 /        \
心的───2────物理的
世界         世界


(ロジャー・ペンローズ(1931-),『心の影』,第2部 心を理解するのにどんな新しい物理学が必要なのか,8 含意は?,8.7 三つの世界と三つのミステリー,みすず書房(2001),(2),pp.235-236,林一(訳))

ロジャー・ペンローズ(1931-)
ロジャー・ペンローズの関連書籍(amazon)
検索(ロジャー・ペンローズ)

にほんブログ村 哲学・思想ブログへ

数学ランキング
ブログサークル

2018年9月3日月曜日

ブラックホールは非常に小さな温度を持つ。宇宙の指数関数的な膨張が続くと、やがて宇宙の温度があらゆるブラックホールの温度より低くなる。ブラックホールはエネルギーを放射するようになり、最後は消滅する。(ロジャー・ペンローズ(1931-))

ブラックホールの温度の宇宙の未来

【ブラックホールは非常に小さな温度を持つ。宇宙の指数関数的な膨張が続くと、やがて宇宙の温度があらゆるブラックホールの温度より低くなる。ブラックホールはエネルギーを放射するようになり、最後は消滅する。(ロジャー・ペンローズ(1931-))】

(1)一般相対論によれば、ブラックホールは完全に真っ黒でなければならない。
(2)一般相対論に場の量子論の効果を考慮すると、ブラックホールは非常に小さな温度Tをもたなければならない。(スティーヴン・ホーキング、1974年)
 太陽質量の10倍のブラックホールの温度は、6×10-9K
 銀河系の中心部にある太陽質量の400万倍だと、約1.5×10-14K程度
 これは、宇宙マイクロ波背景放射の約2.7Kと比べると、ブラックホールははるかに冷たい。
(3)ところが、宇宙の指数関数的な膨張が無限に続き、宇宙マイクロ波背景放射の温度がどこまでも下がっていくと、どうなるだろうか。
 (3.1)やがて、宇宙マイクロ波背景放射の温度が、宇宙に存在しうる最大のブラックホールの温度より低くなる。
 (3.2)ブラックホールは周囲の空間にエネルギーを放射するようになり、アインシュタインのE=mc2の式によれば、エネルギーを失うことで質量も失うことになる。
 (3.3)ブラックホールは質量を失いながら高温になり、信じられないほど長い時間をかけて少しずつ縮んでゆき、ついには「ポン」と爆発して消滅してしまう。(今日の最大級のブラックホールなら、おそらく10100年、つまり「1グーゴル年」程度)。

 「第16章では、ブラックホールのもう一つの特徴を論じるつもりだ。その特徴は、今日では非常に小さな効果しか及ぼさないが、究極的にはわれわれにとって非常に重要な意味をもつことになる。アインシュタインの一般相対論は古典物理学であり、この理論によれば、ブラックホールは完全に真っ黒でなければならない。けれどもスティーヴン・ホーキングは、1974年に行なった分析により、背景の曲がった時空における場の量子論の効果を考慮すると、ブラックホールは非常に小さな温度Tをもたなければならないことを明らかにした。この温度は質量に反比例する。たとえば、質量が10Mのブラックホールの温度は6×10-9K程度となるが、これは、2006年にマサチューセッツ工科大学(MIT)の研究チームが達成した最低温度の記録(約10-9K)に近い、非常に低い温度である。今日のブラックホールはだいたいこの程度の温度だろうと考えられていて、まだまだ温かいほうだ。より大きなブラックホールはもっと低温で、銀河系の中心部にある質量約400万Mのブラックホールの温度は約1.5×10-14K程度しかないと考えられている。われわれを取り巻く宇宙の温度、すなわち、現時点の宇宙マイクロ波背景放射は約2.7Kなので、ブラックホールに比べればはるかに高温だ。
 それでも、もっと長い目でものごとを見るようにして、宇宙の指数関数的な膨張が無限に続き、宇宙マイクロ波背景放射の温度がどこまでも下がっていくと考えるなら、その温度は宇宙に存在しうる最大のブラックホールの温度より低くなるかもしれない。その後、ブラックホールは周囲の空間にエネルギーを放射するようになり、アインシュタインのE=mc2の式によれば、エネルギーを失うことで質量も失うことになる。ブラックホールは質量を失いながら高温になり、信じられないほど長い時間をかけて(今日の最大級のブラックホールなら、おそらく10100年、つまり「1グーゴル年」程度の時間をかけて)少しずつ縮んでゆき、ついには「ポン」と爆発して消滅してしまう。この最後の爆発は大砲の砲弾が破裂する程度のエネルギーしかなく、「バン」と呼べるような激しいものではない。これだけ長く待ったあとに起こる現象としては、なんとも拍子抜けである!」
(ロジャー・ペンローズ(1931-),『時間のサイクル』(日本語名『宇宙の始まりと終わりはなぜ同じなのか』),第2部 ビッグバンの奇妙な特殊性,第12章 ビッグバンの特殊性を理解する,新潮社(2014),pp.141-142,竹内薫(訳))
(索引:ブラックホールの温度)

宇宙の始まりと終わりはなぜ同じなのか


(出典:wikipedia
ロジャー・ペンローズ(1931-)の命題集(Collection of propositions of great philosophers)  「さらには、こうしたことがらを人間が理解する可能性があるというそのこと自体が、意識がわれわれにもたらしてくれる能力について何らかのことを語っているのだ。」(中略)「「自然」の働きとの一体性は、潜在的にはわれわれすべての中に存在しており、いかなるレヴェルにおいてであれ、われわれが意識的に理解し感じるという能力を発動するとき、その姿を現すのである。意識を備えたわれわれの脳は、いずれも、精緻な物理的構成要素で織り上げられたものであり、数学に支えられたこの宇宙の深淵な組織をわれわれが利用するのを可能ならしめている――だからこそ、われわれは、プラトン的な「理解」という能力を介して、この宇宙がさまざまなレヴェルでどのように振る舞っているかを直接知ることができるのだ。
 これらは重大な問題であり、われわれはまだその説明からはほど遠いところにいる。これらの世界《すべて》を相互に結びつける性質の役割が明らかにならないかぎり明白な答えは現れてこないだろう、と私は主張する。これらの問題は互いに切り離し、個々に解決することはできないだろう。私は、三つの世界とそれらを互いに関連づけるミステリーを言ってきた。だが、三つの世界ではなく、《一つの》世界であることに疑いはない。その真の性質を現在のわれわれは垣間見ることさえできないのである。」

    プラトン的
    /世界\
   /    \
  3      1
 /        \
心的───2────物理的
世界         世界


(ロジャー・ペンローズ(1931-),『心の影』,第2部 心を理解するのにどんな新しい物理学が必要なのか,8 含意は?,8.7 三つの世界と三つのミステリー,みすず書房(2001),(2),pp.235-236,林一(訳))

ロジャー・ペンローズ(1931-)
ロジャー・ペンローズの関連書籍(amazon)
検索(ロジャー・ペンローズ)

にほんブログ村 哲学・思想ブログへ

数学ランキング
ブログサークル

人気の記事(週間)

人気の記事(月間)

人気の記事(年間)

人気の記事(全期間)

ランキング

ランキング


人気ブログランキング



FeedPing