2021年11月17日水曜日

内部生成モデルには、進化を通じて継承されてきた仮説の集合(生得的な知識、ベイズ理論の事前分布)と、こうした仮説を個人的な経験によって修正した仮説の集合(事後分布)とがある。(スタニスラス・ドゥアンヌ(1965-)

 生得的な仮説と、経験による修正

内部生成モデルには、進化を通じて継承されてきた仮説の集合(生得的な知識、ベイズ理論の事前分布)と、こうした仮説を個人的な経験によって修正した仮説の集合(事後分布)とがある。(スタニスラス・ドゥアンヌ(1965-)


「脳をこのように見ることによって、成人の判断は、二つのレベルの洞察、つまり、人類に備わった 生得の知識 (ベイズ理論では事前分布と言い、ここでは進化を通じて継承されている信頼できそうな仮説の集合のことと、個人的な経験(事後分布、つまりそうした仮説の、生涯に得られた推論すべてに基づく修正のこと)を組み合わ せる。この分業は古典的な「生まれと育ち」の論争を終わらせる。私たちの脳の組織は、強力なスター トアップ・キットとやはり強力な学習装置を提供するのだ。すべての知識がこの二つの構成要素に基づ いていなければならない。まず、環境とのやりとりに先立つ事前の想定の集合と、何らかの現実のデー タと遭遇したときの、事後の妥当性に従って前提群を整理する能力との二つだ。 

 ベイズ方式が学習には最善であることを、数学的に明らかにすることができる。一回ごとの学習のまさにエッセンスを引き出して、それを最大に利用するには、この方式しかない。チューリングがエ ニグマ暗号に見出したわずかな偏りが合致するというようなわずかな情報でさえ、学習には十分な 場合もある。 システムがそれを、辛抱強く証拠を積み重ねる一人前の統計学者のように処理すれば、いずれ必然的に、ある理論は斥け、別の理論は妥当と判断できるだけのデータが得られる。

 脳は本当にそういうふうに動いているのだろうか。脳は生まれたときから、選択することを学習する もととなる広大な仮説の領域を生み出せるのだろうか。それは観察されたデータがどれほど支持するか によって仮説を選ぶ消去法で進むのだろうか。 子どもは生まれた瞬間から、賢明な統計学者のようにふ るまい、学習経験のたびにできるだけ多くの情報を引き出せるのか。次は赤ちゃんの脳についての実験的データをもっと詳しく見ることにしよう。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,1 学習とは何か,2章 今のマシンより脳の方がうまく学習する理由,pp.78-79,森北出版,2021,松浦利輔,中村仁洋)


脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






私たちの脳は、 内部で現実を再構築することによって、日中の、必然的に限られた経験を増やす。睡眠は、訓練用に使 えるデータが乏しいという、あらゆる学習アルゴリズムが直面する問題を解決するらしい。また、こうした思考実験の間に、私たちは時として何かを発見する。(スタニスラス・ドゥアンヌ(1965-))

思考実験としての睡眠

 私たちの脳は、 内部で現実を再構築することによって、日中の、必然的に限られた経験を増やす。睡眠は、訓練用に使 えるデータが乏しいという、あらゆる学習アルゴリズムが直面する問題を解決するらしい。また、こうした思考実験の間に、私たちは時として何かを発見する。(スタニスラス・ドゥアンヌ(1965-))

「この考え方によれば、夢は強化されたトレーニング用イメージの集合に他ならない。私たちの脳は、 内部で現実を再構築することによって、日中の、必然的に限られた経験を増やす。睡眠は、訓練用に使 えるデータが乏しいという、あらゆる学習アルゴリズムが直面する問題を解決するらしい。今の人工 ニューラルネットワークが学習するために必要とするデータセットは膨大だが、人生はあまりに短 く、私たちの脳は日中に集められる限られた量の情報でやりくりしなければならない。睡眠は、脳が一生かかっても実際に経験するには足りそうにない無数の出来事を、高速化した形でシミュレーションす るために見出した解決策なのかもしれない。

 こうした思考実験の間に、私たちは時として何かを発見する。そこに魔法はない。私たちの頭の シミュレーションエンジンが動いている間、ときどき予想外の結果に行き当たる。 チェスを指す人 が、ルールをおぼえてしまえば、そのルールから得られる結果を何年かにわたって研究できるというの にちょっと似ている。実際、人類は、頭の中のイメージのおかげで科学上の大発見のいくつかを得た たとえば光に乗ることを夢想したアインシュタインや、リンゴのように地球に落ちる月を見 ニュートンのように。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,10章 定着,p.302,森北出版,2021,松浦利輔,中村仁洋)





脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]





学習とは、外の世界を表す内部生成モデルの構築にある。覚醒状態では、ボトムアップ処理により予測された内部モデルを、感覚データで検証することでモデルを修正し、睡眠状態では、トップダウン処理で内部モデルを生成し、トレーニングする。(スタニスラス・ドゥアンヌ(1965-))

 学習

学習とは、外の世界を表す内部生成モデルの構築にある。覚醒状態では、ボトムアップ処理により予測された内部モデルを、感覚データで検証することでモデルを修正し、睡眠状態では、トップダウン処理で内部モデルを生成し、トレーニングする。(スタニスラス・ドゥアンヌ(1965-))

「将来、知能を持ったマシンも、私たちと同様に眠らなければならなくなるのだろうか。 ばかげた質問 に見えるが、それでも私は、ある意味でそうなると思っている。 マシンの学習アルゴリズムはおそらく、人間が睡眠と呼ぶものと似た定着の仕掛けを組み込むことになるだろう。実際、計算機科学者はす でに睡眠/覚醒の循環をまねる学習アルゴリズムをいくつか設計している。このアルゴリズムは、私が 本書で唱えている、学習とは外の世界を表す内部生成モデルの構築にあるとする、新しい学習観を体現 する刺激的なモデルとなる。私たちの脳には大量の内部モデルがあり、頭の中の実物以上に本物らしい イメージや、いかにもありそうな会話や、意味のある推理を、いろいろと繰り返し合成してみることが できる。覚醒状態では、こうしたモデルを私たちの環境用に合わせる。外の世界から得る感覚データを 使って、身のまわりの世界とよく合うモデルの方を選ぶ。この段階では、学習はまずもってボトムアッ プでの作業となる。 予想外の感覚信号が入り、それが内部モデルの予想とは相反するとき、その信号 は予測誤差信号を発生させ、 それが皮質の階層を上り、各段階で統計的な重みを調節する。それによっ て、トップダウンのモデルはだんだん正確さを増すようになる。

 新しい考え方では、脳は睡眠中に逆の、トップダウンからボトムアップへと移るように動作する。夜 間には、私たちは生成モデルを使って、もともと予想されてなかった新たな像を合成し、脳の一部はこ の実体のないところから生み出された一連の像に基づいて自らトレーニングする。この強化されたトレーニング用のイメージ集合によって、私たちはボトムアップの結合を改良できるようになる。 生成モデルのパラメータと、それが感覚にどう影響するかは知られているので、今では両者間のつながりはずいぶん発見しやすくなっている。こうして私たちは、ますます、特定の感覚入力の背後にある抽象的な情報を引き出すのがうまくなる。夜間ぐっすり眠った後なら、ごくわずかな手がかりからでも、現実に ついて、どれほど抽象的であっても最善のメンタルモデルを特定できる。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,10章 定着,pp.301-302,森北出版,2021,松浦利輔,中村仁洋)


脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






メタ認知とは、認知についての認知、つまり心的過程を監視する、レベルがさらに上の認知装置の集合のことを言う。好奇心のギャップ理論によれ ば、 メタ認知装置は絶えず自分の学習を監督し、自分が知っていること、知らないこと、自分が間違っているかどうか、速いか遅いか、等々を評価する。(スタニスラス・ドゥアンヌ(1965-))

メタ認知

メタ認知とは、認知についての認知、つまり心的過程を監視する、レベルがさらに上の認知装置の集合のことを言う。好奇心のギャップ理論によれ ば、 メタ認知装置は絶えず自分の学習を監督し、自分が知っていること、知らないこと、自分が間違っているかどうか、速いか遅いか、等々を評価する。(スタニスラス・ドゥアンヌ(1965-))

 「そのように好奇心を見ることで、子どもが好奇心旺盛であるためには、自分にはまだ知らないことが あるのを知っていなければならないという、興味深い予想ができる。言い換えると、子どもには早い段 階でメタ認知能力がなければならないのだ。「メタ認知」とは、認知についての認知、つまり私たちの 心的過程を監視する、レベルがさらに上の認知装置の集合のことを言う。好奇心のギャップ理論によれ ば、 メタ認知装置は絶えず自分の学習を監督し、自分が知っていること、知らないこと、自分が間違っ ているかどうか、速いか遅いか、等々を評価しなければならない。メタ認知は私たちが自分の心につ いて知っていることすべてに及ぶ。

 メタ認知は好奇心の中心的な役割を果たす。実際、好奇心を持つとは、知りたいということであり、 それはつまり、自分が何をまだ知らないかを知るということだ。そしてあらためて言えば、 最近の実験 では、一歳あるいはたぶんそれよりも前から、子どもは自分の知らない事物があるのを理解しているこ とが確かめられている。確かにその年齢の赤ちゃんは、一人で問題を解決できないときには必ずすぐに 保育者の方を向く。自分が知らないということを知っていればこそ、子どもはもっと情報を求める。こ れが知的好奇心、つまり、知りたいという抵抗しがたい欲の早期の表れだ。

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,8章 能動的関与,p.254,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]





好奇心は、私たちの脳がすでに知っていることと、これから知りたくなること(潜在的な学習領域)とのギャップを検出したときに必ず生じる。私たちはいつ何どきでも、自分がとりうる様々な動作から、この知識のギャップを埋めて有益な情報が得られそうなものを選ぶ。(スタニスラス・ドゥアンヌ(1965-))

好奇心

好奇心は、私たちの脳がすでに知っていることと、これから知りたくなること(潜在的な学習領域)とのギャップを検出したときに必ず生じる。私たちはいつ何どきでも、自分がとりうる様々な動作から、この知識のギャップを埋めて有益な情報が得られそうなものを選ぶ。(スタニスラス・ドゥアンヌ(1965-))

 「何人かの心理学者が、人間の好奇心を支えるアルゴリズムを特定しようとしてきた。実際、この学習 には欠かせない成分がもっとよく理解できれば、それを操ることができたり、さらにはいずれ人類のす ることを模倣するようなマシン、つまり好奇心を持ったロボットに再現できたりするかもしれない。

 このアルゴリズム方式は実を結び始めている。ウィリアム・ジェームズやジャン・ピアジェやドナル ド・ヘップといった大心理学者が、好奇心を支える心の動き方がどういうものかについて推測してき た。こうした心理学者によると、好奇心は、子どもが世界を理解してそのモデルを構築しようという意 欲が直接に表れたものだ。好奇心は、私たちの脳がすでに知っていることと、これから知りたくなるこ——潜在的な学習領域――とのギャップを検出したときに必ず生じる。私たちはいつ何どきでも、自 分がとりうる様々な動作から、この知識のギャップを埋めて有益な情報が得られそうなものを選ぶ。 この説によれば、好奇心は、サイバネティクス装置のように学習を制御する。蒸気機関で蒸気圧を調節 して一定の速さを保つために弁を開閉する、有名なワットの調速器のようなものだ。好奇心は脳の調速 器、つまり一定の学習圧力を維持しようとする調節装置なのだ。好奇心は私たちを、自分に学習できる と思うことへと導く。 逆の退屈状態になると、人はすでに知っていること、あるいは、 過去の経験からしてもう教えられることが残っていそうにない領域を放棄する。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,8章 能動的関与,p.250,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]





不確実な世界では情報の価値は高く、好奇心は生と死を分けることもある。(スタニスラス・ドゥアンヌ(1965-))

好奇心

不確実な世界では情報の価値は高く、好奇心は生と死を分けることもある。(スタニスラス・ドゥアンヌ(1965-))

 「好奇心は生物の根本的な衝動であり、飢えや渇きや安全確保や生殖の欲求と同じように、私たちを行 動に向かわせる推進力だ。それは生存にとってどんな役割を演じているだろう。 環境の状況をもっとよ く知るために探り回るのは、ほとんどの動物種(哺乳類だけでなく、鳥類や魚類の多くも)の関心事だ。巣、 隠れ処、地下道、巣穴、穴ぐら、住処、いずれにしても周囲を確かめずに設けるのは危ない。捕食者が 住む不安定な世界では、好奇心は生と死を分けることもある 。だからたいていの動物は恒常的に縄張 りを見回り、変わったことがないか確かめ合おう、新奇な音や光景等々を調べるのだ。好奇心があればこそ、 動物は知識を得るために安全地帯から出ようとする。不確実な世界では情報の価値は高く、結局はあの ダーウィン的進化の通貨、すなわち生存を対価としなければならない。

 したがって好奇心は私たちに探索を促す力だと言える。この見方からすると、好奇心は餌や配偶者を 求める衝動に似ているが、情報の獲得という触知できない価値を動機にしているところが違う。実際、 神経生物学的研究によれば、私たちの脳では、それまで知られていなかった情報を発見することがドー パミン回路を起動し、当の発見自体が報酬となっている。この回路は餌や薬物やセックスに応じて発火 する回路であることを思い出そう。霊長類では、またおそらくすべての動物で、この回路はただ物質的 な報酬だけでなく、新しい情報に反応する。ドーパミン作動性ニューロンは、将来の情報獲得を知らせ る。まるで新奇な情報を得られると予想するだけで喜びが得られるかのように。この仕組みのおかげで、ラットを餌や薬物だけでなく、目新しさによって条件づけることができる。何も変わったことが起 きない退屈な場所よりも、新しい物がある場所の方をすぐに好むようになり、それによって好奇心を満 たす。私たちが目に映る景色を変えるために都会へ移るときも、最新のゴシップを求めてフェイスブッ クやツイッターをせっせと見て回るときも、まったく同じことをしている。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,8章 能動的関与,pp.247-248,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]





2021年11月16日火曜日

人類の社会的コミュニケーションと教育への依存は、恵みである反面、呪いでもある。宗教的神話やフェイクニュースが人間社会にあっさり広まるのも、教育のせいなのだ。太古の時代から、私たちの脳は、語られる話を、それが嘘でも本当でも、忠実に吸収する。(スタニスラス・ドゥアンヌ(1965-))

社会的コミュニケーション

人類の社会的コミュニケーションと教育への依存は、恵みである反面、呪いでもある。宗教的神話やフェイクニュースが人間社会にあっさり広まるのも、教育のせいなのだ。太古の時代から、私たちの脳は、語られる話を、それが嘘でも本当でも、忠実に吸収する。(スタニスラス・ドゥアンヌ(1965-))

 「教育を通じて、私たちは他者に、これまでの何万代もの人類の最善の考えを伝える。私たちが学習するすべての 言葉、すべての概念の一つ一つは、私たちの祖先が私たちに伝えるささやかな成果だ。言語がなけれ ば、文化の伝達がなければ、共同体の教育がなければ、私たちは誰も、独力では、現に今私たちの物理 的精神的能力を拡張しているあらゆる道具を発見できなかっただろう。教育と文化は私たち一人一人 を、人類の叡智の広大な連鎖を引き継ぐ者にする。

 しかし、ホモ・サピエンスの社会的コミュニケーションと教育への依存は、恵みである反面、呪いで もある。裏を返せば、宗教的神話やフェイクニュースが人間社会にあっさり広まるのも、教育のせいな のだ。太古の時代から、私たちの脳は、語られる話を、それが嘘でも本当でも、忠実に吸収する。社会 的な状況では、私たちの脳はガードを緩める。新進の科学者のようにふるまうのをやめ、何も考えずに 仲間についていくと伝えられるレミング [タビネズミ] のようになる。これは良いことでもありうる 。理科の先生の知識を信じれば、 ガリレオの当時以来のすべての実験を反復したりしなくてすむ。しかし それは不利益にもなりうる。先祖から受け継いだあてにならない 「知恵」でも、集団として広めてしま うからだ。医者がかつて何世紀もの間、愚かにも瀉血法や吸角法という治療法を、本当の作用を確かめ ることなく実践してきたのもそういうことだ(念のために言っておくと、どちらも実は、ほとんどの病気について有害) 

 有名な実験が、どれほど社会的学習が聡明な子どもを何も考えない丸写し人間に変えてしまいかねな いかを明らかにする。 赤ちゃんは生後一歳二か月にはすでに、人の動作をまねする。その動作を理解 していなくても あるいはもしかすると、理解していないからこそ。

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,7章 注意,pp.230-231,森北出版,2021,松浦利輔,中村仁洋)



脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






乳幼児はごく早い時期から顔を見つめ、とくに人の目に注意を向ける。相手が注意しているから注意し、相手が教えてくれるから学習する。人間は、社会的な合図によって、注意を共有する。(スタニスラス・ドゥアンヌ(1965-))

共同注意

乳幼児はごく早い時期から顔を見つめ、とくに人の目に注意を向ける。相手が注意しているから注意し、相手が教えてくれるから学習する。人間は、社会的な合図によって、注意を共有する。(スタニスラス・ドゥアンヌ(1965-))

 「哺乳類はすべて ———もちろん霊長類も含めて———注意システムを持っている。しかし人間の注意は学 習をさらに加速するユニークな特徴を示す。社会的な注意の共有だ。ホモ・サピエンスは、他のどの霊 長類と比べても、注意と学習が社会的な合図に依存している。私はあなたがどこに注意しているかに注 意し、私はあなたが教えてくれることから学習する。

 乳幼児はごく早い時期から顔を見つめ、とくに人の目に注意を向ける。 話しかけられたときに乳幼児 が最初にとる反射的行動は、状況を探ることではなく、自分とやりとりする人物の視線を捉えること だ。赤ちゃんはアイコンタクトができて初めて、その大人が見ている対象の方を向く。この社会的な注 意を共有する顕著な能力は、「共同注意」とも呼ばれ、子どもが何を学習するかを決める。

 赤ちゃんが「wog」のような新語の意味を教えられる実験についてはすでに述べた。 乳幼児が、話し手が wogと言うときに向かう視線をたどることができれば、ほんの何回かの試行でこの単語の意味を難なく学習する ———一方 wogが同じ物体と連動していても、スピーカーから何度も再生されるだけで は学習は生じない。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,7章 注意,p.224,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






実行的注意の動作は、低速で逐次的(中枢ボトルネック)である。アルゴリズムに従って、グローバル・ニューラル・ワークスペースの入力・出力を制御する。(スタニスラス・ドゥアンヌ(1965-))

実行的注意

実行的注意の動作は、低速で逐次的(中枢ボトルネック)である。アルゴリズムに従って、グローバル・ニューラル・ワークスペースの入力・出力を制御する。(スタニスラス・ドゥアンヌ(1965-)) 

「実行制御と、認知科学者が作業記憶と呼ぶものとには、密接なつながりがある。頭の中のアルゴリズ ムをたどってその実行を制御するためには、進行中のプログラムの要素、つまり中間の状態や実行済 みの段階やこれから行われる演算やのすべてをつねに頭にとどめておかなければならない。こうし て実行注意は、私が「全域的神経作業空間 (global neural workspace) と呼んだものの入力と出力を制御す る。この作業空間は、脳のルータ、つまり情報を脳にあるいろいろな処理装置に、どうやって、どの順 で送るかを判定する信号係のはたらきをする。このレベルでは、頭の中での動作は低速で逐次的だ。こ の系は、一度に一つの情報しか処理せず、したがって二つの動作を同時には行えない。 心理学者はそれ「中枢ボトルネック」と呼ぶ。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,7章 注意,p.214,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






注目されなかった対象は、ささやかな刺激しかもたらさず、学習をほとんど、あるいはまったく 誘発しない。(スタニスラス・ドゥアンヌ(1965-))はたら

 注意

注目されなかった対象は、ささやかな刺激しかもたらさず、学習をほとんど、あるいはまったく 誘発しない。(スタニスラス・ドゥアンヌ(1965-))

「注意は必須だが、問題が生じることもある。 注意の方向が間違っていれば、学習は立ち往生すること になりうる。フリスビーに注目しなかったら、画像のこの部分は消去され、フリスビーなどなかったか のように処理は進む。それについての情報は早くに捨てられ、その情報は感覚野のごく初期段階にと どまる。注目されなかった物体はささやかな刺激しかもたらさず、学習をほとんど、あるいはまったく 誘発しない。対象に注意を向けて意識するようになるときは正反対で、必ず、脳に並外れた増幅が生じ る。意識的な注意によって、対象をコード化する感覚ニューロンや概念ニューロンの発火が大きく増幅 され、長引いて、そのメッセージが前頭前野に伝わり、そこでニューロン群全体が発火し、もともとの 画像の持続時間をゆうに超えるほど長く発火しつづける。シナプスがその強度を変えるためには、その ような強い神経発火の波が必要だ これを神経科学者は「長期増強」と呼ぶ。生徒が、たとえば教師 が紹介したばかりの外国語の単語に意識的注意を払うときは、その単語は自身の皮質回路奥深くまで進 み、はるばる前頭前野にまで伝播している。その結果、その単語は記憶される可能性がずっと高まる。 無意識のあるいは注意されない単語はほとんど脳の感覚回路にとどまり、さらに奥の、了解や意味の記憶を支える語彙表象や概念表象にまで達するチャンスが得られない。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,7章 注意,pp.201-202,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






呼出と指向:膨大な感覚情報の飽和を解決するため、脳は情報を選択し、フィルタリングし、増幅し、指向した対象の処理を深くする。(スタニスラス・ドゥアンヌ(1965-))

呼出と指向

膨大な感覚情報の飽和を解決するため、脳は情報を選択し、フィルタリングし、増幅し、指向した対象の処理を深くする。(スタニスラス・ドゥアンヌ(1965-))

 「そんなとき、脳は警戒と待受(「注意の維持」とも言われる)、選択と放念、指向と信号のフィルタリング といった、注意の要となる状態の大半を、数分の間に通り抜ける。認知科学で言われる「注意」とは、 脳が情報を選択し、増幅し、流し、その処理を深くする仕組みすべてを指す。そうした仕組みは進化で は古くからある。犬が耳の向きを変えたり、鋭い音を耳にしたネズミがすくんだりするときは、私たち が持っているのとよく似た注意回路を使っている。

 注意機構がそれほど多くの動物種に進化したのはなぜかというと、注意が情報飽和と いうありふれた問題を解決するからだ。脳には絶えず刺激が降り注いでいる。視覚、聴覚、嗅覚、触覚といった感覚が毎秒何億ビットもの情報を送ってくる。当初は、こうした通信のすべてが別々のニューロンで並 行して処理される。 しかしそれを深いところまで整理できるほどの資源は脳にはない。 そのため、注 意機構のピラミッドは、巨大なフィルターのように組織され、しかるべき優先順位をつ ていく。脳は 各段階で、しかじかの入力にどれだけの重みを与えるかを決定し、必須と考える情報にのみ資源を割り 当てる。

 適切な情報を選ぶことは、学習の根本にかかわる。注意がなければ、データの山にパターンを発見するというのは、よく言われる干し草の山で針を探すようなことになる。それが従来のニューラルネットワークが遅いことの主な理由だ。ネットワークは、情報を整理して適切な情報にすることができず、提供されるデータがとりうるすべての組合せの分析ばかりに相当の時間を浪費してしまうのだ。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,7章 注意,pp.198-199,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






3種類の注意機構が区別される。(a)呼出、(b)指向、(c)実行的注意(マイケル・ポズナー(1936-))

注意

3種類の注意機構が区別される。(a)呼出、(b)指向、(c)実行的注意(マイケル・ポズナー(1936-))

3種類の注意機構

①呼出 (alerting)。いつ注意を向ければよいかを合図し、警戒レベルを調節する。

②指向 (orienting)。何に注意を向ければよいかを合図し、関心の向いた対象を増幅する。

③実行的注意 (executive attention) 注目された情報をどう処理すればよいかを決め、与えられた課題に関連する処理を選び、実行を制御する。














「注意は適切な情報の選択に根本的な役割を演じているので、脳のあちこちの回路に存在する。アメリカの心理学者マイケル・ポズナーは、少なくとも三種類の大きな注意機構を区別する。


呼出 (alerting)。いつ注意を向ければよいかを合図し、警戒レベルを調節する。

②指向 (orienting)。何に注意を向ければよいかを合図し、関心の向いた対象を増幅する。

③実行的注意 (executive attention) 注目された情報をどう処理すればよいかを決め、与えられた課題に関連する処理を選び、実行を制御する。

 以上のシステムは、脳活動を大規模に調節し、そのため学習が進みやすくしうるが、学習を間違った方向に向けることもある。この三点について、一つ一つ検討してみよう。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,3 学習の四本柱,7章 注意,p.202,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






ニューラルネットワークの中に暗号のようにコード化された暗黙の知識は、意識化され理解されて、最小限の語数の言葉で表現されることで、他者に対して伝達可能となり、他者と共有される。(スタニスラス・ドゥアンヌ(1965-))

 社会的学習

ニューラルネットワークの中に暗号のようにコード化された暗黙の知識は、意識化され理解されて、最小限の語数の言葉で表現されることで、他者に対して伝達可能となり、他者と共有される。(スタニスラス・ドゥアンヌ(1965-))



「社会的学習 

 ヒトは自発的に情報を共有する唯一の種だ。私たちは周囲の人々から言語を通じて学習する。この能 力はまだ、今のニューラルネットワークの及ぶ範囲を超えている。ニューラルネットワークのモデルで は、知識は何億というシナプスの重みの値に希釈されて、暗号のようにコード化される。 この隠れた暗 黙の形では、知識を引き出して選択的に他者と共有することはできない。それに対して、人間の脳では、私たちの意識に達するような、どんなに高次の情報でも、他者に対して明示的に述べることができ る。意識的な知識は、言葉によって伝達可能であることと一体になっている。 何かを十分に明瞭な形で理解するときは必ず、頭の中で思っている何かが思考の言語の中で共鳴して、私たちはそれを言語の言 葉を使って伝えることができる。私たちが最小限の語数を用いて (「市場へ行くには、教会裏の小路で右に曲 がりなさい」というように)自分の知識を他者と共有できるという並外れた能力にかけては、動物界にもコンピュータの世界にも、並ぶものがない。」

(スタニスラス・ドゥアンヌ(1965-),『脳はこうして学ぶ』,1 学習とは何か,2章 今のマシンより脳の方がうまく学習する理由,pp.56-57,森北出版,2021,松浦利輔,中村仁洋)

脳はこうして学ぶ [ スタニスラス・ドゥアンヌ ]






予測不可能性や絶対的非決定性は、自由意志の本質ではない。それは、物理法則、遺伝子、過去の経験、神経回路に組み込まれた価値判断のメカニズムに従ってはいても"自律的"な決定というものがある。過去の経験、思考、価値観から選択肢を導出し、欲求や情動と熟慮のなかで選択する。(スタニスラス・ドゥアンヌ(1965-))

自由意志の本質

予測不可能性や絶対的非決定性は、自由意志の本質ではない。それは、物理法則、遺伝子、過去の経験、神経回路に組み込まれた価値判断のメカニズムに従ってはいても"自律的"な決定というものがある。過去の経験、思考、価値観から選択肢を導出し、欲求や情動と熟慮のなかで選択する。(スタニスラス・ドゥアンヌ(1965-))

「量子的な現象が何らかの働きに影響を及ぼしていたとしても、その本質的な予測不可能性 は自由意志という概念にそぐわない。哲学者のダニエル・デネットが詳しく論じているよう に、脳に純粋な形態のランダムさを帰属させても、「いかなる種類の価値ある自由」ももたら さない。私たちは、自分の身体が、トゥレット症候群患者の無作為のひきつりやチック症のよ うに〔どちらも、突発的で自己制御できない体の動きや発生が生じる〕、亜原子レベルで生じ る制御不可能な逸脱によってランダムに振り回されることを望んでいるのか? 自由の概念か らこれほどかけ離れた考えはないだろう。

 「自由意志」について議論するとき、私たちはもっと興味深い何かを意味する。自由意志に 対する私たちの信念は、正常な状況のもとでは、高次の思考、価値観、そして過去の経験に よって意思決定を導き、下位レベルの不必要な衝動をコントロールする能力が私たちに備わっ ているという考えを表現する。私たちは自律的な決断を下すとき、すべての選択肢を考慮し、 そのなかからもっとも気に入ったものを選び出すことで自由意志を行使する。確かに、自発的 な選択には偶然性が入り込む余地があるが、それは本質的なものではない。私たちの自発的な 行為のほとんどはランダムどころではなく、選択肢を慎重に検討し、もっとも気に入ったもの を意図的に選び出して実行されるのである。

 この自由意志の概念は、量子力学に訴えずとも、標準的なコンピューターシステムとして実 装し得る。人間のグローバル・ニューロナル・ワークスペースは、感覚入力および記憶からす べての必要な情報を集めて統合し、その結果を評価し、それについて好きなだけ時間をかけて 熟考したうえで、実際の行動を導く。これこそが、私たちが意思決定と呼ぶところの行為だ。 

  したがって自由意志について考察するにあたっては、私たちは意思決定に関して二つの直感 を明確に区別しなければならない。一つは根本的な非決定性という疑わしい考えで、もう一つ は自律性という尊重すべき考えだ。脳の状態は原因なしに引き起こされるのではなく、物理法 則から逃れられない。物理法則を免れられるものなど何一つない。しかし意思決定は、行動を 起こす前にその長所と短所を慎重に検討しつつ、いかなる妨害もなしに自律的になされれば、 純粋に自由なのである。この条件に当てはまれば、たとえそれが究極的には遺伝子、それまで の人生、そして神経回路に組み込まれた価値判断のメカニズムによって引き起こされたのだと しても、私たちはその行為を自発的な決定と呼べる。自然に生じる脳活動の変動のゆえに、自 分の決定は自分自身にさえ予測できない。だがこの予測不可能性は、自由意志を定義する特徴 ではないし、ましてや絶対的な非決定性と混同すべきではない。重要なのは自律的な意思決定なのだ。」

(スタニスラス・ドゥアンヌ(1965-),『意識と脳』,第7章 意識の未来,紀伊國屋書店 (2015),pp.365-366,高橋洋(訳))<b

意識と脳 思考はいかにコード化されるか [ スタニスラス・ドゥアンヌ ]









人気の記事(週間)

人気の記事(月間)

人気の記事(年間)

人気の記事(全期間)

ランキング

ランキング


哲学・思想ランキング



FC2